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Many dynamical stochastic processes occur “on top” of a deterministic process. We present a method
which uses the trajectory of the deterministic process as basis functions for quasiarbitrary distributions. A map
for the stochastic process can then be computed. This may have applications in electron storage rings or other
devices perturbed by a small stochasticity. In this paper we will look only at the most elementary applications
of the method[S1063-651%99)05310-9

PACS numbds): 29.20—c, 02.50.Fz, 02.50.Ng

I. INTRODUCTION ing such as Touschek although they can be included in the
method.
Predicting the time evolution of a distribution, even when
all the mathematical properties of the system are known, can A. The map for the distribution

be a very difficult task. In this paper we present a method First id initial distributiofi- in the ph
which assumes that the stochastic map is “near” the sym- Irst consider an initial distribution In the phase space

plectic map and thus uses the invariants of the symplecti?ffmible?z:(X'p)' LE_’tt us ?ssumedtha:,hln th? abs<]=:=nce of alny
map as support functions for a quasiarbitrary distribution, S'OCNastic Process, it evolves under the action of a symplec-

We limit the core of the discussion to one degree of freelIC ONE-turn mapm:
dom. We do this for two reasons. First it is simpler to intro-
duce a new method in a simpler setting and, in this setting, it
is even beyond thg scope of .th|s introductory paper to ad- then Yz f(2)=fo(m~X(2)). 1)
dress all the potential applications.

The second reason is more problematic: we are not Casjnce we will deal explicitly with functions, it is worth no-
pable at this point of extending the method “correctly” in a yicing that the action of the mam on the functionf is
multidimensional setting. Of course in accelerators th'sequivalent, in the symplectic case, to the action of the sym-

might be the most important case. We hope the reader Wilﬂ)lectic mapM ~* as defined by Dragtsee Ref[4] for ex-
nevertheless get useful ideas from this paper, if not for ringplanation$

dynamics, maybe for other fields.

We acknowledge at the onset that this method was first fi=feem 1= M"1f,. 2)
proposed by GerasimoM ] to Pauluhn and Mais at DESY
and that Pauluhfi2] did a preliminary testing in her thesis. |n the literature the map\ is called the “Koopman” op-
This was fortunately unknown to us when we started theerator. Furthermore, the process of finding a basis.for
work because it might have discouraged us from going anWwhich is then usually truncated is called “Koopmanization.”
further. Standard perturbation theory whether expressed in terms of
Lie operators or other terms amounts to representing the map
M in a monomial basis truncated at certain degree. Hamil-
tonian perturbation theory does the same thing on the gen-

To introduce this technique it is best to limit ourselveserator of the mapM, the Hamiltonian of the system. The
first to one-degree-of-freedom processes, that is to say, teonperturbative methods of Warnoek al. also amount to
two-dimensional systems. We will also present a true onerepresentingM in a special basis more suitable to problems
dimensional example to illustrate the relative merits of thenear the short term dynamic apertivery nonlineay. In the
brute force, Irwin[3], and map methods of this paper. case of perturbation theory, the truncation of the matrix rep-

One has to be honest here: although some two-degree-ofesentingM leads in general to an asymptotic series as one
freedom systems can be handled easily by this method, itfies to find invariants of the motion, that is to say, eigenvec-
general there are severe complications. Thimighe case of tors of unity. For these reasons the choice of the basis for the
the brute force or Irwin’s method, which extend to higherexpansion ofM is critical to the search of well-behaved
dimensions rather easily. quasi-invariants.

Furthermore, we will assume that the stochastic process The operator which transforms a distributionfg ~* in
under consideration does not depend on the distribution itthe symplectic case. In the case of an arbitrary map, it is
self. This invalidates processes involving intrabeam scattercalled the Frobenius-Perr¢f] operator(FP) and it acts in a

if z,=m(zp)

Il. THEORETICAL DESCRIPTION OF THE METHOD
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space dual to the Koopman operator. It should be said that an if n05=as_l°m05°ao
expansion of the KoopmamM in terms of monomials is ' ’
equivalent to a representation of ttteP) operator in terms of
moments. It is well known in accelerator physics that a mo-
ment expansion is notoriously inadequate for the study of B
lifetime or even equilibrium issues. Therefore in this paper, then Nos;1(h,d) =+ pos(J) )
in effect, we will propose a better expansion set for the FP Nos;2(#,d)=1J
operator in the presence of stochasticity and small damping.
Thus, let us imagine that the rayis modified by a sto-  This map propagates a normalized ray from an arbitrary po-
chastic variable\, sition s=0 to a final positiors by advancing the phasg an
amount uo4(J). Obviously if “s” is a continuous length
Z=27+A, (3)  along some reference curve, this will induce changes in the
Hamiltonian or the associated Fokker-Planck equation. In-
and thatA is governed by a d|str|but|0m(Ayz) Then the deed that Hamiltonian part of the Fokker-Planck equation
distribution after one turn can be written as (VlaSO\b will leave invariant the function od. If we further
average over the canonical angl® then the resulting
Fokker-Planck equation depends bonly (see Sec. IVCB
Ufo(z):f1(2)=j fo(m 1 zA])p(A;zA)dA. (4  Obviously, by construction, the resulting distribution will de-
pend on the invariant functiod(x,p) only. This is justified
when the average phase advance coming from the stochastic
h(zrm A is small compared to the tung. Generally this
eans that the damping must be small compared to the tune.
There are three problems associated with this formulation.
First of all, as usual, we still have to solve a messy differen-
c tial equation while our most reliable model for the symplec-
Ufo(2)=F,(2)= § f fo(masl[ZA])Ps(A;ZA)dA ds. tic (and nonsymplecticdynamics comes in the form of a
s=0 ' tracking code. Hence just writing down an equation for
5 (x,p) is already a problem of major proportions. Secondly
] ) . ~we must still find the invariant coordinateg(J); this is no
In this paper we will use Eq4) without loss of generality small task especially if they are to be fed into a differential
because the functiop can represent the integrated effect of equation ins, the longitudinal position around the ring.

and (¢!J)S: (as;l(X, p)!aS;Z(le))

This map is exact so far. It should be noted that, if the sto
chastic process happens all along the ring, one can rigorous
integrate (or sum along longitudinal positions where sto-
chastic kicks occur:

ps OVEr one turn or more. Thirdly, and most fundamentally, in the presence of islands
the variables §,J) are, at best, only locally defined. While
B. The expansion set for the map we can check by tracking a large number of raysa ray for

This is very nice and completelv useless so far. The EB* VEWY long time that the equilibrium distribution will sit
map is trul g monstrous in'?e roydifferential e ua.ltion' so ey nearly on invariant trajectories, we cannot find a ca-
P y 9 q ' ._nonical transformatio that will work over the entire phase

” " e .
what can we do’ _Tradltlc_mally, Itis customary to convert thlsspace. Within each islan@nd within tiny islands inside the
equation into a differential equation neglecting higher order

i . . ~. ““lislandg one could get an approximate canonical transforma-
moments of the random variable The resulting equation is .. ; )
the Eokker-Planck equation. Indeed. if we include first anqIlon a, but these transformations cannot be smoothly interpo-
second order momer?ts of We will ét a differential equa- ated. This means that any method based on a differential
. X - g q equation that tries to take advantage of the local existence of
tion for the functionf or equivalently for the FP operatof.

The Fokker-Planck equation will look like the Vlasov equa- an invariantJ will not WO”‘- . . L
: o . In the case of a differential equation, it is important to
tion except for additional terms proportional to second par-

. Jr ; N . have a grid which is indexed in a continuous manner. For
tial derivatives in the distribution. These terms will lead to ; . . .
diffusion. example, if the invariant) represents concentric curves

The Fokker-Planck equation is neither sim#éto set up around the origin, then a discretization may work as follows:

nor to solve in the general case. However, the dimensionalitfirSt we decide that the largest action will Be This value is
of the problem can be further reduced if one assumes that tHiicked by assuming that the distribution is almost null at this
final distribution will sit on the invariantg7] of the symplec- /arge amplitude. Secondly, we decide to slice phase space
tic map. This is done, formally, by introducing a new set ofinto N_ orbits for the purpose of d|§cret|zmg the dlffergntlal
variables ¢,J) to replace the original vectar=(x,p). It is 9quat|9n. The concentric curves will be Iabgled by an integer
assumed that the seip(J), consisting of one angle and one | "anging from 1 toN. For example,);, theith trajectory,
action, totally normalizes the mam or equivalently the can be given byJ/N. In this case, the derivatives with re-
Hamiltonian which gave rise to this map. Thus we have  spect toJ that are needed in the solution of the Fokker-
Planck equation will be obtained by taking divided differ-
MJI=Jem=J. (6)  ences. In the case of an integral equation, we will see that
this is not necessary. We are free to label value3 a$ed in
Moreover, if we denote by, the canonical transformation the discretization scheme in a completely arbitrary manner.
connecting X,p) to (¢,J) at position “s,” then the result- Figure 1 displays an example with islands. A continuous
ing mapngg in the new variables has the form indexing scheme is not possible for the same reasons that a
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peaked(Dirac § functiong distributions, we only need to
define 7 on an individual phase space point. Thus if a par-
ticle lands at coordinateg, between the trajectoried and

Ji, we will then assume that this ray contributes to bagth
and J, using a particle number preserving algorithm. For
example, suppose we determine that the “distance” between
the trajectories); and Jy is d, then a ray(Dirac ¢ distribu-
tion) falling a “distance” d; from J; will result in a new
distribution

8

[d—d;]J;i+diJy

77(5(2_ ZO)): d

(10

The details of the projectionr will turn out to be quite
irrelevant. If the reader needs a concrete model, he can imag-
ine that in the case of th&’s being concentric circles, the
distance between them could be measured along the radial
direction.
In summary, we have a rather coarse phase plot as our
FIG. 1. Support grid with three regions. support grid and a projection operatsrwhich allows us to
project aé function distribution on the neighboring trajecto-
globally definedJ is topologically impossible. The phase rjes.
space is divided into three regions: below the islands, in the
islands, and above the islands. The trajectories are labeled as
follows: i=1,10 are below the islands=11,20 in the is-
lands, and finallyi =21,30 are the trajectories above the is- It is instructive to make an analogy with quantum me-
land chain. It is important to realize that this labeling is nowchanics. The symplectic map divides the phase space into
totally arbitrary. One could randomly scramble the relation-energy levels. Indeed the Bohr-Sommerfeld quantization
ship between the indeixand the topological featurégajec-  rules would involve precisely the actich However, this]
tory in this casgon the plot. is only locally defined, thus we need several “quantum”
Now we are in a position to describe a distribution whosenumbers: first we need an integer describing the region of
contours are the symplectic trajectories. Let us again denotehase space we are sitting in. In the example of Fig. 1, the
by N the number of trajectories plotted. Then an arbitraryindex takes the values 1, 2, and 3. Secondly, within each
distribution f can be projected onto this contour by a yetregion, a second index ranges from 1 to 10 in the example of
undefined projection operater. Flg 1. Thus we could label our support $é{|| = 1,N} by an
" equivalent se{J,|k=1k; 1=1J,}. In our examplek is 3
andl, is 10 for allk’s. This new set is useful when discuss-
7 (f ):;l Vidi. ® ing connection with the continuous case. The inlespeci-
fies a canonical transformatios, which locally assigns a
The quantities); represent unit distributions concentrated onnhumerical meaning to the action variable. If we follow this
theith trajectory.(They are Diracs functions in the variable ~analogy further, we can translate the entire computation of
J.) In other words, the distributioh=100QJ, is a distribu-  the map into a quantum equivalent. Our goal will be to com-
tion of 1000 particles evenly distributed in the local phdse Pute the probability that a statd, jumps to a new state
on the fourth trajectory. Thus a distribution of 10000 par-Jk:1-- The probability of the jump is governed by the func-
ticles with 1000 on the first trajectory, 8000 on the secondfion p(A;z) or, more appropriately, by the projection of this

C. The map restricted to the grid

and 1000 on the fourth would be given by function onto a space consisting dfdependent distributions
only.
1000J,+8000J,+1000J, 9 Physically this is not a bad approximation even far from

equilibrium. Suppose we inject a beam off axis, then two

or, equivalently by the component vectorv  things will happen. The beam, due to nonlinear shéa-
=(1000,8000,0,1000,0,0,,0). Again we must repeat that, mentation, will evolve rapidly towards a-dependent distri-
while it is convenient that the indéxprogresses more or less bution. However, even in the linear case when filamentation
monotonically as we go away from the origin, it is not nec-is null, the beam will visit the entire length of the trajectory
essary. due to the phase advance. This means that the ergodic aver-

Finally we must say a few words about the projectian age over a few turns will mimic the effect of an evenly
If we take any distributiorf that depends only od, then distributed density in the phas¢ associated to the local
due to the coarseness of the grid, it will not be possible tactionJ. Thus two effects rapidly combine so as to vindicate
represent it exactly. The best we can do is to projetly  our choice for the grid.
some approximate scheme onto the gidgi =1,N}. This We now proceed to restrict the mépon the grid using
projection is done with a prescription denoted#ySince an  our quantumlike notation. This will temporarily permit us to
arbitrary distribution can be written in terms of sharply retain a connection with the continuous case. It will be



4796 ETIENNE FOREST AND DAVID S. ROBIN PRE 60

dropped later. We start with an arbitrary distribution on theis now substituted into Eq16),
grid as in Eq.(8),

koo kol koo,
fo(d)= 2, 3 viad(I= ) 3. ay  U(eID=2 2 2 2 UaadI=Ia) 3V

(18)
In this expression, the variableis a true action in thgth
region of phase space. Thus the funct&d—J,,) is a Dirac
delta function whiles is a Kronecker delta. We substitute
this result into Eq(4) for the operatoi/:

At this stage the pretense of a continuous theory can be
dropped and we can replace the double indideand «\ by
single indicesa andb. Thanks to the projectiomr, the map
I U has been restricted to the grid, and we can extract a trans-

k .
Ufo(d’,lj):J kgl ;1 V(3= 3y fer matrix U, for the map:

N

_AJ)5J_AJkp(A¢,AJ,AJ,¢—A¢,JAJ,j
W,= U or W—_UV,
a bzl abVb

—Aj)dA. (12)
We can now sum/integrate in the variablesJ(Aj), N N
o where w=i§1 w;J; and v=;l viJ;. (19
Uto($,3.)=2 2 | vip(AgI=Ja i —ki¢
=A@,y K)dA . (13 D. Actual computation of U,y
Let us change the integration variable frdwp to a quantity Let us start with the main process leading to an equilib-
bu=d—Ad: rium distribution, namely, radiation. We will assume that a

computer code exists which can provide us reliable simula-

koI : ) o ) ) . o
o . tions without radiatior{symplectig, with classical radiation,
Uto(4,J1)= kZl ,Zl Via | P(¢= I~ ] and with Monte Carlo stochastic corrections to the radiation
process. We further assume that this code has a graphical
—K; by Jii K)dy . (14)  user interfacdGUI) interface so that the user can select the

) ] ) ... orid and erase undesirable trajectories as he goes along.
Finally, under the assumption of this paper, a distribution™ Thg first challenge is to map out the symplectic trajecto-
which is uniform along a trajectory stays uniform. Thus we jeg on a relatively coarse grid and to select points on these
must have approximately trajectories which are equally spaced in phase. Suppose we

P are looking at thebth trajectory in an attempt to compute
ﬁf p(d— b, I— I i — K; it dur , K)d by =0, U,p- This trajectory is started py chclqng onan initial ra¥y _
on the screen. We keep tracking until the trajectory has fin-
(15 ished painting an area on the screen. At this point, after
f p(— i 3= It i — K g s K)d b =U(J,j: 3, k). iterations, the trajectory is recurrent as far as the pixel reso-
lution of the screen is concerned. It has completely filled the
invariant torus on which it is assumed to sit. The total tra-
jectory is given by a sel,={Z[i=0,T,} where iterates are
kool listed consecutively. Now consider the subsgt{z™k
Uo( b)) = > > U,j 3k KV - (169  =1Np; mk<Tp} which representsN, particles equally
k=11=1 spaced in phase. Furthermore, by plotting these separately or
) ] ] ) using a very different color, we can ensure that they also
Equation(16) is extremely simple to interpret: The kernel ,onyate the torus more or less evenly. The computation of
elementU(J,];Ji,k) connects a discrete distribution on the the matrix element),, will use these particles. How does
support grid denoted here by the double indéy (k) to the  this work? Let us assume that the magepresents g-turn
potentially continuous set of trajectorie, |). In reality we operator. Furthermore, we now introduce the mmap, the
must project this information on the grid and this is wheresiochastic extension of the symplectic mapand we build
the projectionsr comes into play. The result a new set®M using the subsdl, . At every pointze I, we
. launch the mapny for q iterations and we repeat this sto-
Uaid3—30) 8, (A7) chastig experimenyl time;. We then obtain a new sgt™,
1 the union of all our experiments,

We substitute the operatdt in Eq. (14),

>

K
7(U(J,j3du.k))= Zl

N
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M
I,‘}’M=U zz:(mzo‘--omz)(zmk) s k=1,Ny; mk<T,. (20
[ ——
g times
To evaluateU,, we use the projectionr on a single ray It is easy to show that this set is a convex compact set. By

(Dirac ¢ distribution) as we hinted in the preceding section. Brouwer's fixed poin{8] theorem the mapJ, provided it is

We take a rayze |g'M and project it on the grids using Eq. continuous, must have a fixed point.

(10). In general, a ray will distribute itself ontidwo) neigh- Finally we will (almos}) prove later that the map is con-

boring grid points as in Eq10): tracting; it will converge to the equilibrium distribution al-

though it may not be unique. To illustrate this consider a

strange process for which radiation is present only on the

inner trajectories. For example, looking at Fig. 1, we assume

that damping is present on trajectories 1-10 around the ori-

We then sum all contributions from the skgt'\" : gin. We also assume that fluctuations are present from tra-
jectory 1 to 9 with a zero probability of making a jump to the

N N
a[Z]=2, d™J;, with >, d"™=1. (21)
=1 =1

1M N tenth. It is easy to construct such an imaginary system. It is
Uab=m N_E [dgz]results ofeth experiment (22 c_Iear tha_lt the inner particles wpuld settle on some equilib-
e=1 Npk=1 rium orbit and that the outer orbits would be on the symplec-

tic trajectories. Essentially the outside would be a proton

The process is repeated for all support curves solifrians  peam with infinite degeneracy while the inside would be
from 1 toN. In the example of Fig. 1 we would repeat this “electron” in behavior.
process 30 times. The reader must remember that the existence of an equi-

Let us say a few words about the curve with the largestibrium orbit is proven here on the grid; in some cases the
amplitude. Usually we can select a trajectory at a large amresult is totally unacceptable. This usually will reflect the
plitude which encompasses all the other support grid pointsact that the grid is no longer adequate. For example, if only
We can call this curve thiith trajectory. A particle landing  diffusion is present, the beam will slowly crawl out until it
outside this trajectory poses a boundary condition problempounces around the maximal grid trajectdsy. This is un-
In this paper we opted to make this last boundary absorbinghysical; in the real system it keeps diffusing foreveell,

that is to say, that rays falling outside are assignedyto not really...there has to be a beam pipe somewhere
All of this implies that if we spend time proving theorems
IIl. SOME PROPERTIES OF THE MAP for our grid system, it may not be applicable to the real thing.

) ) ) ) Nevertheless we will give proofs of the various assertions
_In this section we examine some properties of the mapsince they teach us a lot about the nature of the system we
Rigorous statements will be made only for the map restricte@gnstructed.
to the grid. The reader will notice that many of the state- The existence of a fixed point has already been mentioned
ments will apply to a general grid instead of a grid made ofang is the result of Brouwer's fixed point theorem. This re-

symplectic trajectories. sult extends to the case ofsadependent/, i.e., a nonlinear
U. (We mentioned that the mdpwas dual to the map1 in
A. The existence of a fixed point the symplectic case. One may ask how a matrix of infinite

imension can become “nonlinear” once more...of course
is happens because the original problem had a greater di-
mensionality than first contemplated since the nonlinearities
in U came from the interactions between the particles—
N intrabeam scattering.Indeed if we add density-dependent
Q(v)=>, vi=Q(Uv). (23  diffusion and construct the projectianso as to preserve the
=1 particle number, the conditions for the application of the
theorem will still be satisfied and thus there must be a fixed
In addition, we also know thal will preserve the positive  point. The next important question is whether the map is
nature of the component’s. Thus if we start with a physi-  contracting. From now on the discussion focuses on the lin-
cal distributionv; =0, not only will the particle number stay egr case.
constant but so will the positive definite nature of the distri-
bution. Thus the set of all distributions with a given number

The map restricted to the grid must have a least one fixe
point. We know that the particle numbe€x(v) is preserved
by construction,

of particlesQq, B. Contraction: All eigenvalues are<1
N The issue is this: will an initial distribution settle down on
D(Qg)=1{v|lv= v;;v;=0 (24)  an equilibrium or oscillate? First we prove that the eigenval-
i=1 ues have a modulus less than or equal to 6@ee notes that

N=—1 prevents contraction from taking place. This was
is also preserved under the actionlf pointed out by Bob Warnock.
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Suppose that is an arbitrary real vector. It can be written only the eigenvectors corresponding\te- 1 can be physical

as

v=v,—V_, v, i=max0y;), v_;=max0,—v;).

(25

The two vectors are orthogonaly(,v_)=0, and non-
negative:v, =0yv_=0. Nonzero components of, corre-
spond to zero components wf and vice versa. Also,

Z (Uv>i=2i [<Uv+>i—<Uv,>i]=Ei Vi,

stationary distributions. Unfortunately it is not possible to
reject the possibility that a linear combination of the other
eigenvectors is present. In that case, the final distribution will
oscillate in time so that its ergodic average will be the “equi-
librium” distribution. Consider the following case:

0 1 0
0 0 1
1 00

U= (28

for which all the eigenvalues are on the unit circle. The

becausdJ on non-negative vectors conserves particle numeigenvectors are

ber.

Now suppose that is an eigenvector with eigenvalue
Then by the preceding result;v;=\2,;v;. Either (a) \
=1, or (b) =;v;=0. Let us pursudb) in the case of real.

The corresponding eigenvector may be assumed to be real,
since real and imaginary parts, if linearly independent, would

simply amount to two real eigenvectors with the same eigen-

value. Now we can write
Uv,=v, +Av’,

wherev', ;#0 if and only ifv,;#0 andAv’;# 0 if and only
if v_i#0. If vi=0 we arbitrarily setAv’;=0, and notice
thatv’,; may possibly be nonzero. That idy, may have a
nonzero component where neither nor v_ does. Now,
sinceUv, =0, we havev, =0 andAv’ =0. Of course, we
also make the analogous breakuplbf _ .

Now we have

AMvi—vo)=(VL—Av,)—(v_.—AV"). (26)
We cannot, however, always draw the conclusion that

AV, =V, —Av)

—1+iv3 —1-iv3

V1: 1, 2 y 2 3
—1-iv3 —1+iv3

V2: 1, 2 y 2 y (29)
Va=(1,1,1).

This map could represent a symplectic map with a third or-
der island chain. Obviously if we start with one particle in
island number 1,

Vo=(1,0,0), (30)
then it will jump to island 3 and then island 2 and finally
back to 1.
U'vo=3{e'*™%v; +e 2™, +(5,5.3). (3D

Therefore the ergodic average will be given by the compo-
nent along the eigenvector of unit eigenvalue.

It should be pointed out that we will not see anything like
that in our simulation since we purposely lump the islands
together. Therefore we can safely assuiom physical

since, as mentioned above, may have nonzero compo- grounds that there are no eigenvectors of modulus 1 other
nents in positions where, has none. Such components than equilibrium distributions, in which case the map is con-
must be cancelled, however, by corresponding componentsacting. The existence of=—1 eigenvectors can always
of v’ , in order that Eq(26) be satisfied. Let us then define be checked on the map itself.

V.=Vl if vi#0 andV ;=0 if v;j=0. Then we have
AV, =V, —AvV),
and the corresponding equation for particle numbers,
AN, =AN=N,—AN,.
But by the above we also have
N, +AN_=N=N,+AN_
hence by that

AN<N—-AN,_ —AN_<N. (27

C. Uniqueness of the equilibrium distribution: Connected grid

To prove the uniqueness of the equilibrium distribution,
we must assume that the grid is connected. We say that the
grid is fully connected by the malg if a distribution on the
grid J, will eventually diffuse to an arbitrary grid,, after
forward or backward propagation under the actiorlJofIf
we denote thenth power of U by U" then we say that the
map connects all of phase space if

VYkVm3an#0 such thatUp , #0. (32
The prime example of a totally disconnected grid is the origi-
nal symplectic map described on thig's. In this case the
map U is just the identity and thus there is no communica-

Thus, we conclude that the modulus of the eigenvalues musion between the various support distributions.

be less than or equal to one.

Our goal is to prove that the equilibrium distribution is

Now it is obvious that the map will contract to the sub- unique when the map) satisfies condition(32). First we
space spanned by the eigenvalues of unit modulus. Secondlgtove that an equilibrium distribution of the form given by
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Eq. (25) must be such that, or v_ vanishes, i.e., the equi- Vvanishes at a certain amplitude. This amplitude corresponds
librium is physical. We start by assuming that conditi)  to a region where the maximum change due to a stochastic
is satisfied and thus there exists a powetUofor which a  Kick is always less than the damping towards the origin. In
part of the vector.. gets mapped intg_ and/or vice versa. the purely damped case, the backwards connectedness is es-

Thus, for this map, Eq27) applies withx=1: sential to prove the uniqueness of the distribution.
Finally it is intuitively obvious that, for a disconnected
N=<N—-AN,_ —AN_=<N. (33 case, the number of connected regions will determine the

degeneracies in the final distribution. Again the purely

Since at least one of the vectors is assumed to make connegamped case with islands is a good example to think about.
tion with the other(let us say, ), then it must be true that

AN, >0, (34) E. Conclusion on the theoretical digressions

We have set down the basic features of the map we intend
from which we can immediately conclude that to construct. Nevertheless this paper is truly worthless with-
N<N—AN (35) out reproducibleexamples. Or}e need; to get a feel for the
= + adequacy of the method and indeed its failures.

As mentioned before, we restrict ourselves to systems in
pne degree of freedom or approximately reducible to one
degree of freedom. We believe that there is a lot to learn
about this technique and its relationship with other methods
even in this restricted environment.

which is obviously a contradiction.

Thus, since we assumed that the map is connected, it fo
lows that a fixed point must be physidall positive compo-
nents.

D. Uniqueness in the connected case IV. EXAMPLES AND RESULTS

Uniqueness is proven by assuming the existence of two . ) ) ) )
fixed points and constructing a situation contradicting what N this section we will present first a simple beam-beam
was just proven in the preceding section. We assume th&f@P where we, the authors, control all the aspects of the

there exist at least two equilibriaandw. simulation. We will then simplify even further and produce a
ridiculous (unphysical one-dimensional map. This map will
1. Case w=0 permit us to understand the relationship between different

This lead . di diction: i p” methods of calculation, namely, the brute force method, the
is leads to an immediate contradiction: it suffices to.. method, and the method presented here.

considt_'-zr th% new equilibriurllw—w Vr\]'hiCh hﬁs eégact_lt))/ t_he Next we will present an example extracted from the Ber-
form given by Eq.(25. We know that such a distribution yojey Advanced Light SourcéALS). This example presents
cannot exist as proven in Sec. Il C. some challenges even when restricted to one degree of free-

2. Case ww#0 dom.
We construct a vectag perpendicular tov, A. A little beam-beam map
V- W We will show here some tracking results of the original
w=g+ IVATAL (36) beam-beam map suggested by Hirata. This map consists first

of a rotationr which mimics the ring:

and notice thag itself must be an equilibrium. From the

results of the preceding section, the componentgrofist be r1(X,p)=C0% po)X+siN(0)P,

all positive or all negative. Thus eithgror —g is physical. _ e (37)

But notice thaty-v=0, this leads to a contradiction with the 2(X,P) =COS o) P SiN(pto)X.

first case. Therefore the equilibrium is unique. Q.E.D. Then it is followed by a one-dimensional beam-beam kick
We conclude that in the case of the mapthere must be

at least one fixed point. In the linear case, the map must be b1(X,p) =X,

contracting and thus reach an equilibrium. Finally, if the map ) (39

is connected as defined in Sec. IlIC, the equilibrium is exp(—x“/2)—1

unique. b,(X,p)=p+8mé <

These results are in agreement with our intuition. As we . _ _ )
said before, we do get an unphysical result when only diffu-The variable§ measures the first order linear tune stift
sion is present or equivalently when our last giids not revolution uni} resulting from the beam_—beam force.
located far enough so as to enclose most of the beam. The _The compl_ete map for th_e _symplectlc system denoted by
reader might wonder why the “connectedness” includes™ N the previous sections is just
backwards propagation: a linear map with damping alone m=ber (39)
does have one equilibrium, the origin, but connectedness is '
realized only with backwards propagation. The same is trughe “radiative” map was constructed by adding a damping
with maps which have limited diffusion. If there is an upper mapd given by
limit to the magnitude of the random kick a particle receives,
then it is possible to show that the equilibrium distribution d(x,p)=N(x,p)=e “(X,p), (40
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Let us now turn to some real simulations using the little
map of Sec. IV A. The parameters of the map were selected
as follows:

followed by a stochastic map,

S(x,p)=(X+A,p). (41

Mo
vo=-—=0.23,
The variableA was chosen naively to take the valugss 2m
with equal probability. The constatcan be related to the
nominal beam sizes of the linear map. For example, the equi- £=1.5x107?,

librium emittance of the linear map is
A=1-1073, (45)

52

_ -2
Se= T2 (42) 6=9%X10 ~. (46)

The first stage in our method consists in producing a
and the nominal beam sizer nominal sigmais just phase space portrait of the support distribution.
In Fig. 2 we see 55 trajectories which will be used to
support the distribution. The reader will appreciate that the
_ o o computation of a one-turn map is extremely inaccurate be-
o= —= . (43 " :

V2(1-2\%) 2\a cause the actual map would depend critically on the projec-

tion operatorsr that projects an arbitrary distribution on the
, . ) chosen grid. The reason for this is simple: in one turn par-
The complete stochastic map , entering in Eq(20), isthe  icjes do not migrate far as they stay in the immediate neigh-

composition of all these maps, borhood of the support distribution from which they origi-
m) nate. For this reason we selected here a 200-turn map, i.e., a
— map representing about 20% of a damping time.
mg=Xodobor. ) TN
= (44) In the calculation of the map) we arbitrarily launch

MN,=1000 trajectories twice. These are denoted by the la-

bels “1” and “2” in Fig. 3. We also did a “manual com-
In Eq. (44) we also introduce the damped deterministic mapputation.” By this we mean that we watched the various
m, . This map, which contains the main component of clascoefficientsU ., for a fixedb being plotted as they are com-
sical radiation, is deterministic. It allows us to check theputed; we then stopped the execution when the logarithmic
assertion that the full map does not destroy the symplectibar plot seemed to settle down. We found out that this took
structure too much. For example, in order to increase thé@etween 2000 and 4000 trajectories. This is shown in curve
speed of the simulation, one is tempted to increase the dampumber 3. The agreement is quite good and, in particular, the
ing and the fluctuation components wofy, this cannot be agreement is equally goddr bad in the core and the tail. In
done if the damped mam, dramatically changes the island fact the core presents a special problem: at small amplitude
size. In practice it means that big islands, under a smallhe damping will always be too small and thus the details of
damped forced, become basins of attraction for their respedts effect depend on the projection algorithm
tive elliptic points. This can be totally destroyed for larger We can see the tail results in the logarithmic plot of
damping decrements. Fig. 4.
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FIG. 4. Logarithmic plot of the tail.

) ) FIG. 5. Support grid for the big island case.
The reader notices that we made two brute force simula-

tions: one simulation with 3:810° turns and a simulation 5=9%x10°2, ¢=1.42 (case 1
with 330x 1P turns. We present both numerical results so as ’ ' 48)
to gauge the accuracy of the brute force simulation. The 6=3%x102, 0=4.74<10 ! (case 2.

results appear to be quite good.

In the next section we investigate the big island case; a$he support grid for our simulations is given by Fig. 5.
we will see, it is very hard to obtain reliable results. The next plot shows a tridimensional plot of the brute
force simulations for both values of the fluctuation param-
eters.

The important number to consider here is the transfer rate

When the nominal beam size becomes small compared teetween islands. Since the brute force method tracks a par-
the size of the islands we can expect the beam to split intéicle for a long time, it is important that it visits all the
what appears to be two independent distributions: one distrigllowable phase space. Once the islands start separating as
bution in the main island centered around the origin and onghe fluctuation strength diminishes, then the probability of
distribution around the secondary islands—the fourth ordetrossing from one island to the other also diminishes. In the
islands in Fig. 2. In such a case the equilibrium distributioncase of§=0.03 we see that a particle transferred on average
may be very hard to computsee Sec. IVE In particular,  once every 370000 turns, while in the casesef0.09 the

brute force tracking may fail as the test particle spends afransfer rate is greatly enhanced at one transfer per 5300
eternity in one island. Indeed the separatrix is now situated ifyrns.

the “tail” of this distribution and thus particles seldom reach
it. It is also our belief that the Irwin method may also fail 1. Back of the envelope explanation of the results
unless it is modified to include two cores; this will be exam-

ined in Sec. IVD. ; S o o
Indeed the brute force and the plain Inwin method will fail problem. Let us think of two distributions sitting at equilib-
rium very far from each other; we assume that each one sits

qualitatively unless a prohibitive number of turns and/or Parround its own equilibrium center. This can be realized

ticles are used. On the other hand, our method wil alWay?nathematically by inventing a system with a discontinuous

pr(_J(_juce good qualitative _re_sults bUt will have a hard timebehavior around a boundary which separates phase space
nailing down the exact ratio if the islands are truly very big. into two identical linear regiongWe will study such a fake

ca\l,_:st ;Jhselcc;célt(e?:ntimgti(i:a;zft:fomﬁeb(ranaa:gsbg?emi drgﬁgé;? bOtr§ystem in Se_c. IVD.This is a little b.it what happens_ in the
’ presence of islands. Furthermore, if the random kick has a
finite maximum valugas in our casg then the distribution
Mo . . . .
vo=o =0.24, will fgll to zero at some maximum amplitude. Let us call this
amplitudea. In addition, if we assume that the center of each
distribution is separated by a distance greater th@ntBen
£=1.5x102, (47  there is no contact possible between each region and the two
equilibria are centered around their respective fixed points.
The mapU for such a system would have two eigenvectors
with unit eigenvalues.
If we reduce the distance between the fixed points below
but the fluctuation is different, the critical value of A, then we expect the distribution to

C. Big islands: Study with the beam-beam map

To understand what is going on here let us reverse the

A=1-103,
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start mixing until a single equilibrium is reached. Because of o1l P

the symmetry, we expect the equilibrium distribution to have
an identical number of particles, namelN,+ N,)/2 where r
N; is the initial population of théth region. Parenthetically it -0.15 0T T T T e e
is interesting to see how the two independent eigenvectors Grid Index
must combine so as to produce one physical distribution with
eigenvalue one and one unphysical distribution with an ei- FIG. 8. The three leading eigenvectors o+ 0.09.
genvalue less than one and a population of zero. Remember
that all the eigenvectors of the map must have a popula- would take an astronomical time to reach equilibrium. How-
tion of zero unless they are equilibrium distributions. Thusever, if we bring them suddenly into closer contact, we can
before contact, the two independent vectors are centereabsume that the two distributions are nearly Gaussian and
around their respective fixed points. For an infinitesimal con-estimate the relaxation time. The rate of chafgr turn for
tact, a single equilibrium distribution is formed as the sum ofthe population of a Gaussian distribution is given at large
the two previous equilibria with equal population. The otheramplitude by the approximate formula0,7]
eigenvector, with an eigenvalue infinitesimally below one, is
made of the difference of the two previous equilibria with d_N_N&ﬁ _ N4 F(‘ i)

) . . = exp(—eleg)=N-—ex 5. (49
equal population. In actual physical cases, such as those dis- dn €9 o 2
played in Fig. 6, one does indeed get a second eigenvector,
with components of opposite signs in each island as is showhior example, at a radiuge =50, the relaxation timeap-

in Fig. 7. proximatelyN/dN) is
The first question to ask is how big & For our simple
stochastic distribution it can be computed exactly in the case T= ﬁ — 1 ex;{ 2_5) ~1.07x 10 (50)
. . ey . — 3 . .
of a linear map. However, let us just say that it is bigger than dN 10°25 2

the nominalo of Eq. (43) and that it is typically of order . . o .
o/ \Ja. Therefore for a damping af=0.001 we expect that This large number g;dlcates that the two dllstnbutpn.s will
a will be about 30 times larger tham. The exact ratiq9] take more than 10 10° turns to reach equilibrium. This is at

depends on the details of the linear map and the stochastife limit of our calculational abilities. Let us look at the plot
process of Fig. 5 and estimate the surface enclosed by the separatrix.

Calling the distances between the two fixed poini, 2 " the units of the graph, we get an area of 10.25 for the

then we can say that for values Df a bit smaller thara it ~ duasirectangle around the origin. This is equalna and
thus for 6=0.03

013 s A E 1025 o o1
or b /\\ N o2 m(0.4147 G
: " i ] leading to a relaxation time
0.05 [ /?\ /\ E - J
o r % t m ] ~1
.S L // H dN
g ol ] e e o T=N| 45 ~7X10°. (52)
- S L g I I B e n
A | A N { : . . . . .
0,05 Litpmmn sl ooy ;‘ 7 This number is not inconsistent with the transfer rate found
\ / g N X for the cases=0.003 despite the handwaving we used: we
0.1 [edenibi 3 I assume that the islands are of equal size and we neglected
. \ / —— Eoquilforiuza distortions of the linear dynamics. In any event we just
0.15 PN it culsioe N W ] wanted a “ballpark” number.
\/ - X: - First Eigenvector (Normalized)
02 - Rl i 2. Explanation of the results using the eigenvectors

0 5 10 15 20 25 30

Grid Index It is very interesting, in light of the discussion of Sec.

IV C1, to plot the eigenvectors of the map. In particular, let
FIG. 7. The three leading eigenvectors f 0.03. us look at the casé=0.03. It is given in Fig. 7.
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The first curve depicts the equilibrium distribution which Let us concentrate on the stochastic part. If we assume that
goes nearly to zero between the islands. The second cunike damping and the stochastic kick are small, we can ex-
shows the second eigenvector, the one with an eigenvalygand the integral as follows:
closest to one(Please notice that the equilibrium is thus the 1
“zeroth” eigenvector in Figs. 7 and BAs expected, it is —_ o ol
made of a linear combination of the first island and the sec-' — L f+20f—Vi-A+aX-Vi+ §AiAJ‘9i‘91‘f p(A)dA.
ond island distribution. The fourth and fifth curves show the (55)
same eigenvector with two different normalizations. The
reader will notice that the fourth curve follows the first bump We can now perform the integral over the stochastic kick:
of the equilibrium distribution very well while the fifth curve

is almost on top of the second bump; thus this calculation — 0 - 1
vindicates what was said in the preceding section. f=f=g, =2f+ai-Vi+5(Al)0:0;f
The third curve represents the second eigenvector. The determiniotic part stochastic part

reader will notice that it looks very much like a derivative of

the equilibrium distribution. This eigenvector would have here we assume(di>=0. (56)
been the leading eigenvector in a more conventional mMono- \we have introduced the timelike parameter™to de-
tonically decreasing distribution. The local maxima of theygte the turn number. Obviously we can integrate this equa-

distribution have a population close to zero with a high gra+jon with respect to i and this will not change the results
dient while the regions of high gradient are now flat. In they, leading order:

case of a simple system and under the Fokker-Planck ap-
proximation, it can be proven that the eigenvectors are re- T exp(i)f
lated to the Laguerre polynomial of order zero and do have '
an increasing number of zeros as their eigenvalue decreases. 1

We can therefore say that the rate of transfer between where j:a{2+>z.v*}+ ~(AjA) 33 . (57)
islands is controlled by the eigenvalig while the mixing 2
within each island is controlled by,. In a case without a
big isolated island, thern, becomes\ ;. In Fig. 8 we display
again the first three eigenvectors. The reader will notice that,

We can now express the full one-turn midpas

despite the clear existence of a populated island, the second Uf={expX)flem™*

eigenvalue has a rather messy shape. (58
In the case of=0.03, the first eigenvalugor one turn 1 - . def .

was computed to be;=1-(1.147 10" °). Therefore, if we or U=M""expX) where M™f =fom™=.

assume(incorrectly that the probability of jumping from The mapM ! is the usual symplectic map which can be

one island to the next is given bwy,;=1-—X\;=1.147 . . .

%1075 and that the number of jumps obeys a Poisson diSg—:-xpressed in terms of Poisson bracket Lie operators.

tribution. then we can expect a iump evary - wrms. that is Now let us perform a phase average. Since we have gone
! P Jump every k " through the trouble of writing a propagator for our map, let

every 87000 turns. . ' o
. rform nonical transformation on it:
In the next section, we show how the Fokker-Planck treat—us perform & canonical transformation on it

ment gives a similar result in the linear case. L L ~ )

AUA™ = AM ™ exp (E) A

3. The Fokker-Planck treatment 1 g1 PO

= AMTTAT Aexp (E) A
Rt

=R lexp (AEA-I) . (59)

In this paper, we have avoided the Fokker-Planck treat-
ment completely. Nevertheless it is interesting to see how the
eigenvectors come out of the linear problem in cases which

we can solve analytically. 5 . h ical ¢ . h
The idea here is to derive a stochastic operatorifan y assumption the canonical transformation turns the sym-

differential form rather than the more correct integral form,PI€ctic map into a rotation. Now let us compute the effect of

Let us look at the effect of the maped of Eq. (47) on an A on the stochastic operat&r. Let us start by examining the

arbitrary distributionf. It is given by the exact relation transformation properties of a regular deterministic vector
field. They are given by the formul@epeated indices are
— S summed over
f=j e?f(e*x—A;,e*p—A,)p(A)dA. (53
A AF 0, A" =G,9;=G;=(Fd,a; ')oa. (60)

Equation (53) refers only to the stochastic paftlamping  next we should examine the transformational properties of a
includeq of the map. To this we must add the mapwhich  giffusion operator of the typ®;;d,4; . In general, if the ca-

is purely deterministic: nonical transformatiotd is nonlinear, then the diffusion op-
erator will transform into the sum of a diffusion operator and
Uf —Em—{ J €29f (e —A,e"p—A,) p(A)dA Lom1 a deterministic vector field. The formula is given by
= = 1 )
A

(54) AD|18|(9]A71:5|](9|0”J+5|5|,
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D ={D.da ‘dpa; loa, 61
i { ab%a%%i b } ( ) agl(x,p) TX'F
Di={Dapdadpd; ‘}oa
Let us assume that the mapis just a linear map and thus it
can be normalized by a regular Courant-Snyder transform
tion:

4f we substitute this transformation into E@1), we get the
following results:

Sk
x

a; t(x,p)=
(62)

ABA =1 %(A’;’>6f+ [% (A2) + 5(A2) + 20 <A1A2>] &
|

! ’
Dy Ds,

+ _<A1A2> + % <Af>] 0oyt + {247 -V} 63

i
D12

This operator of Eq(63) is two dimensional and completely The symplectic part of the maR ! leaves any function af
equivalent to the original operator. However, we would likeinvariant and thus is just the identity once we average over
to average over the phase of the symplectic motion. This ig. It is interesting to investigate the eigenfunctions of the
best done by introducing anoth@ronlineaj transformation  operator{U):

into the action angle variablesp(J). The transformation

analogous to that of Eq62) is just D
F7J 2aJ+2JﬁJ )\ka. (67)
X
Cfl(Xl,Xz)Z —tanflx—l, Let us first look at the equilibrium distribution, which must
2 obviously obey
. At 7 203+ 232 fwe=o0 68
Cy (X1, X2) = 5 3| 2 +2 23 ; (68)
or equivalently z;nd have a finite integral. The answer can be easily found to
e
C1(X1,X5)=2X, COSXy, D
(64) Wo(J)=J, texp(— /), where Jo=g.- (69

Co(X1,X2) = —/2X, SiNX; .
The next step consists in writing a general eigenvector as the
Since we are going to ignore any angle dependence, we neggloduct of an unknown functiop and the equilibriunw,.
only to compute theDz and D22 terms of Eq.(61). After  The resulting equation fagp is
some algebra, we obtain the results

. 2N
Jp+(1-J1Jy)p=—

_ . 70
D,=Dy;+ Doy, D P 7o
_ ) o . (65 The solutions are expressible in terms of the Laguerre poly-
D,,=2J(D1;c08 ¢+ Dj,sin? ¢—D1,Sin 2¢). nomials:
We may now substitute the results of E§3) into Eq. (65) W (J) =wp(J) L (I Iyp),
and average over the phage The total averaged mafiJ) (71
becomes ANe=—2ak, k=0,1,2,....
P D o The Laguerre polynomials can be obtained from the recur-
(U)=ex4 J[Za.H— 5 ‘](93}) sion relation
(66) 1 dk

D=p(A2)+2a(A2A,)+ B(A2). LX) = 7 € Gx{eT™%}. (72)
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The reader will notice that the eigenvectoi has a single In fact, the Irwin method can be shown to be a rigorous

zero atJ, and thus looks like the derivative ofi, with  extension of the brute force method in such a case.

respect to the radius=2J. (Not exactly, since the zero of Now what can be said of the casg;,<X,p<X

the derivative is af/2.) Finally, we see that the eigenvalues =n(x3)¥?? The reader notices that this system has two fixed

of the exponential operators are given by the formulaXxgp( points: one at zero and one &fp. We will find that the

or exp(2ak). Irwin method has serious troubles if the islands are far apart;
Therefore as one would expect in a one-island situationit is reduced to brute force. Let us describe in words the

the modes damp at a rate consistent with the damping of thienplementation of these three methods.

deterministic motion. This is why we often track a distribu-

tion of the order of a few damping times to get a general idea 1. Brute force

of the core equilibrium distribution. Obviously this must fail . . . .

) . Let us discretize the space inkb points,

in a large island case.

i . . ) X
D. Blg islands: A one-dlmensmnal fake- map X =i %, j=1N. 77

The following question arises. When the islands are sepa-
rated beyond the ability of brute force tracking to work, what
can we expect from our map method, what can we expedtiiow we simply track a ray for a large number of turls
from the Irwin method? and record the visiting frequency of each intergl,X; , 1].

To understand the relative merits of all the methods, we Obviously this method has the usual problem: to know the
will create a true one-dimensional problem. Consider the foltail with a good accuracy one needs to waste an enormous
lowing system defined for positive only: amount of time building the core to a ridiculous accuracy.

Therefore the number of turns needed becomes prohibitive.
Vx>0 m(x)=x,

. 2. The Irwin method
AX if X<Xmig

00 =1 5o N Xap—X)  if Xpp>X>Xpg D The Irwin method is a clever trick which allows one to
keep a constant accuracy from core to tail. Suppose we de-
S(X)=x+A, A==*§ termine that to know to the core with a 1% accuracy or
better, it is necessary to track 10 000 particlégt us define
if x+A<O0 then 3(x)=—A—x the core as the region near the origin containing 90% of the
particles) Then the Irwin method proceeds as follows.
and if x+A>X then 3(x)=2%—x—A. (74) Step 0: Track 10000 particles until they seem to settle to
an equilibrium.
First let us look at the casg,q=X,p=%X=c. This corre- Step 1: Locate the surfacg, that determines the limit of

sponds to an attractive fixed point at the origin. Thus in thethe core; the position below which 90% of the particles are.
absence of a stochastic force, the equilibrium distributiorRecord the population distribution of that core; this will be
will be a & function at the origin as all particles are inexora- the equilibrium core.
bly attracted towardg=0. Step 2:(useless in one dimensipiow track the 10000

If we turn on the fluctuation, then the beam will settle for a few more damping times and record where the particles
near the origin. The reader can check that all the even equeross thexqg boundary. Obviously in one degree of freedom,
librium moments can be exactly computed. For example, wehey all cross at the same place. Store this flow information
have for future usage.
Step 3: Start 10 000 particles in the region Xqg. Track

i as in step 0. However, each time a particle falls belgw

2\ _
{x >°°_1—)\7’ (75) put a particle back on the surfagg, using the flow infor-
S mation computed at step @n one degree of freedom, sim-
while the odd moments depend on the distribution ply put back atxgy.) This step clearly assumes equilibrium.

Step 4: Go back to step 1. Now the word core applies to
%) :i< f‘sp ) (6—X) dx) _ 6 (76)  this new region.
D W P é 1-\° This algorithm is looped around as many times as neces-
sary. In the case when 90% is selected, we slowly advance
This simple model can be simulated easily by brute forcefowards the deeper part of the tail, each iteration looking into
Irwin method, and our method. We should point out that oura region nine times less populated than the previous iteration.
method is(unfairly) rigorous in this one-dimensional prob- The accuracy, it is hoped, remains approximately the same,
lem because it must be true that the distribution sits on thend more importantly, the number of particles needed for
trajectories of the unperturbed problaipoints on the real each region is the same for a constant accuracy.
axis). However, we selected this simple problem because all This method, originally due to Irwin, has been very suc-
methods are easily implemented. cessful and is not limited to one or two dimensions. Further-
For the case&q=Xop =, we will see that all the meth- more, unlike brute force, it permits the exploration of tails
ods “work’ in the sense that they produce good results. Thefor most problemgbut not all, as we will seewith a good
Irwin method will actually produce extremely good results. degree of accuracy.
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FIG. 9. Comparison in the case ®f,y= X,p/2= %. FIG. 10. Comparison for the separated islands casgy
o =6(x)12, x,p=10.5x)"2 andx=15x2)2

It should be pointed out that the ergodic hypothesis, _, . . o . .
which is behind Irwin’s method and brute force, allows us toTh'S interval was divided into 100 small intervals and thus

replace the tracking of a cof@0 000 particles, for example mt?n 10& pr?'rl:]s f(t))irn:i]r? m?p rcitc;m]putat:jo?r.] FO: t_het.sal;e of
by the tracking of a single particle as in the brute forcetomparson, the g algo used the projection

method. This point, apparently not in lIrwin’s original paper, Ezgelzcmggoilg\?\/”etignbsoetg i': é?e grtLertSt za;cfn:ndmlgtrtgg zlarV\;lenes
greatly simplifies the work. It also permits a unification of . o . g- P 9
the brute force method and the Irwin method. The Irwin'" t.he tail with the Irwin method up to the point where the
method is a clever extension of the brute force method rathelt[WIn method starts to fall apart.

than a competing algorithm. We will use it on the one-

i i 5. With islands: %y R =n(x2 )12
dimensional map of E¢(73). ith islands: Xnig<X;p<X=n(x)

In this case we considered the following “tough” case

3. The map method (see Fig. 10
The map method is trivially applicable to this one- x_..=6(x?)Y2  x,p=10.5x?2 and x=15x?)2
dimensional problem. The support trajectories are simply the (79

grid pointsx;. The 7 projection can be selected as in Eq. ) . .
(10). As usual a number of turns equal to a substantial fracThe Irwin method was tried with 2010° as well as 200

tion of the damping time must be used. The end result will bex 10° particle tracking per iteration. Each iteration attempted
a map §] propagating a distribution Supported by the to build the distribytion in increments of 50%, which iS, of
“points” ;. course, conservative.

The map method was also used and the results were far
more constant, indicating that it probably settled to an an-
) ) .. Sswer closer to the correct one. Why do we get these bad

Here we performed a brute force simulation with oqits7 |t has to do with the sudden appearance of a corelike
280000000 particle turns. We also performed an Irwin calygginn at large amplitude. As we built the tail, this region is
culation with 14 steps of 20 000000 particle turns. At eachi, isipje: no particles whatsoever have yet entered it. Intrin-
step we advance by increments of 90% deeper in the taikjcq1y there is nothing wrong with this because the same is
Finally we did a map calculation with 101 entries. A 100- 6 i 4 regular monotonically decreasing distribution. How-
turn map was computed with 28 000 stochastic expenment@ver, in the case of a big island, the center of “gravity” of
for each entry. In the language of EQO), the map calcula- ¢ 14| abruptly jumps as particles start populating this is-
tion was done with land. In our example it was typical to see a jump of the last

Irwin surface from 25% ok to about 70%. In other words,
q=100, Np=1, M=28000. (78 the Irwin algorithm suddenly discovers the existence of a
second beam orbiting around the island centered arapgd
The parameters for the map were selected as follows:  anq starts building the outer tail of that island. The inner tail
between the central island and outer island is badly repre-
A=0.999 and 6=0.09, sented.
One way to fix this problem would be to increase the
with a total grid over the region number of particle turns, but this is a return to brute force.
The second possibility would be to devise a two-core Irwin
xe[0,20Qx%)Y?], (x?)1?~2.013. method and match at the interisland boundary.

4. No islands: %y,jg=Xyp/2=®
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FIG. 11. Logarithmic and linear plots for the closer islands casg=3.75x?)2, x,p="7.5x?)2, andx=15(x?)'2.

To show how things get better as the islands approackven small islands. The basic problem is the sudden popula-
each other, we also simulated the following cdésee Fig. tion increase as one reaches the outer island.
11):

Xmig=3. 75X Y2 %, =7.5x2)Y2  and k= 15x2)2. E. An advanced light source case

(80 The Berkeley Advanced Light Source is a 12-fold triple

. . . ) ) bend achromat ring. An experiment was conducted ‘“to
We simulated “brute” force with 288 10° particle turns. auge” the amount of beam present in the main island as
The particle visited each region 105 times and thus the brutg | "as in the third order islands shown in Fig. 15.

force results must be sensible. The reader will notice that At first we thought that these islands were perhaps popu-
there is an excellent agreement between the brute force simyseaq by gas scattering or other long range phenomena. It

lation anq the Irwin method. Of course in the extreme talil, 8%yppears that the ordinary radiation process is sufficient to
the logarithm plot shows, the Irwin method agrees much betzg e the outer islands to populate. In any event, this is a
ter with the map method. Let us look at the case good example of the method with its pluses and minuses.
2\1/2 _ 2\1/2 o 2\1/2 The first hurdle is the dimensionality of the problem. The
)75 =100 and X=100<) (81)  full problem certainly requires a multidimensional calcula-
tion. If we ignore the vertical direction, there still remain the
This case must have by symmetry equal population in boti$ynchrotron oscillations. However, if we go to a dispersion
islands. So, for the purpose of making things a little asym{ree point right at the symmetry point where insertion de-
metric, two grids were chosen. In one case 100 intervalgices are normally put, the equilibrium beam will be “one

Xmig= 5(X

separated Xk?)¥2 rather than 10. dimensional.” By that we mean that the equilibrium qua-
This places the midpoint between the 45th and 46th grid
point, at 45.45 to be precise. We also tried to put the center 01
point at 45.25 using 100 intervals over a distance of about ﬂ
11.0497x%)Y2—it is interesting to see if this affects the total 0.01 [\\ /
population of the two islands. The results are displayed in “\ 4
Fig. 12. The distribution is very symmetric as one would 2 \ ,"Y'
expect. Actually the percentages of the total population oc- 3 0001 \ S e oF Stochastic
cupying the first island are foun(_j to _be 51.4%, 48.4%, & .s' Expefiments
47.9%, 50.0%, and 49.8% for the five simulations shown in  ¢.0001 \
Fig. 12.
Our last example, with this one-dimensional map, con- 5 \ / /
. . . 10 4
cerns the case of a large island with a small population. The X «f —o—Map 1400
parameters are x : Map 14000
10°¢ { Map 14,0000 (Case 1)
Xmia=5(x)Y2,  X,p=7.5x%)12 and x=10(x?)12 v --+--Map 14,0000 (Case 2)
(82) ; - -+ - Map 14,0000 New Grid
10° T T

0 20 40 60 80 100 120

We selected 100 grid points over 11.04@Gr no particular crid Index

reason in this cageThe results are in Figs. 13 and 14.
This case shows how the Irwin method, which works FIG. 12. Symmetric casé200-turn map Xmq=5(x?)*? and
beautifully in a monotonic case, seems to have trouble with,p=5%=10(x?)2,
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FIG. 13. Small island calculation with tail results magnifigghg=5(x?)*2, x,p=7.5x?)*2, andx=10(x?)*?2,

dratic moments will be proportional or consistent with the The moments were computed using a six-dimensional beam
existence of an equilibrium emittance whose shape is giveenvelope formalism. We found these ratios to be constant
by the one-dimensional Courant-Snyder theory. Thereforewithin better than one part in a thousand. The next step con-
using the beam envelogd1,12 formalism, we check this sists in generating a random kick in thedirection which
assertion and concoct a one-dimensional stochastic kicwill reproduce the correct moments. The formula for the
which will give us the correct horizontal moments at the quadratic moment of that kicks?) is obtained by equating
symmetry point. There is a lot of hand waving, but it doesthe stochastic change in the Courant-Snyder invariant with
reduce the dimensionality of the problem to a one-degree-ofthe change due to damping:
freedom case.

For better or worse here is how we proceeded. First let us ) 4(1—)\)<x2>
assume a one-dimensional problem. It is easy to show that (%)= ,3— (89
the average moments are given by Y

1 1 1 The stochastic kick as well as the damping parametare
(x%)= 7 B(e), (p?)= >¥(e), and(xp)=—za(e). input to a one-dimensional tracking of the ALS.
83) At this stage we can link our favorite tracking code with

our GUI program and track element by element as we nor-
The quantity(e) is the average value of the Courant-Snydermally do. Of course since the beam is rather small we are
invariant. Therefore if the beam sizes at the dispersion freéempted to generate a Taylor series map using truncated
point “appear” one dimensional, we expect power series algebr@PSA) and perform symplectic track-
5 5 ing with an adequate method. It should be said that this is a
ﬂ~ (p*) _ @ perfect problem on which to try the TPSA map tracking. We

~ 84 ) -
B v a (84) found out that the phase space of Fig. 15 can reproduce with
0.1 , , :
< , —&— Brute Force 36 Billions turns 5.6407° y} i
0.01 + Average of 28000 Maps
% Irwin 280 Millions 4.8.10°
--%--Map 200 (50 turns) 1 ) i
0.001 -+ - Map 200 (50 turns) 2 P ]
\ Irwin 100000 case 1 4:10
g 00001 Tt EWETE LRI SENE s \
£ 3.2:10
E \
& 10 1 24407
5
10 1.6:10°7
107 8.10°
10°® i
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Grid Index Grid Index

FIG. 14. Some good results for small islands using very approximate maps.



PRE 60 MAPS FOR DISTRIBUTIONS AND THEIR TIME EVOLUTION 4809

FIG. 17. Another view of the logarithmic plot for ALS.

ing with the experiment but simply comparing brute force
with the map method on a given representation of the experi-
ment. For example, if we select the grid support displayed in
Fig. 15, we can estimate the center island population to be at
FIG. 15. Support grid for the ALS example. about 7.5% using a 10000 turn map. Reducing the number
of turns to 5000 increased this estimate to 9%. Pushing it to
a fifth degree Taylor series map. The map was factorized ang20 000 turns gave us the more correct 4.5%. What is going
its nonlinear part was tracked using a characteristic functionon here?

Damping was added by a general multiplicative factor of  First of all it is clear that if we push the number of statis-

tical experiments towards brute force numbépsr trajec-

N=exp(—4.143< 10" °) (86)  tory), we will obtain the brute force result. The map, of little

value, will simply indicate that all initial distributions tend
acting on the matrix part of the map. The stochastic kick wasowards the equilibrium distribution. Therefore we should
added as before on the variabde To speed up tracking the not be surprised to see the results improving as the number
damping was increased ko= e(~ 11410 \We checked that Of turns represented by the mapincreases.
the deterministic damped map had similar basins of attrac- Why are the results so hard to obtain? We think that the
tion. The stochastic fluctuation was increased so as to kedprge size of the islands creates a substantial region of slow
the nominal beam sizes constant. tune. Figure 17 shows again the logarithmic plot where we

For the case of Fig. 15 the islands were close enough tbave enhanced colors and shadows to reveal the asymmetry
be obtainable by brute for tracking. We tracked S0@° of the equilibrium distribution. Around the fixed points the
turns and recorded the visitation frequency. We also reequilibrium distribution does not follow the symplectic tra-
corded the number of times the particle moved from thdectories very well. Furthermore, this region is rather large,
middle of the main island to the middle of the outer island.but more disturbing to our method is the importance of that
We found that this happened 350 times. This implies that théegion in a weakly populated tail. Indeed the relative popu-
relative population is probably known quite accurately bylation of the islands is determined by the transfer rate be-
brute force tracking. The result is plotted in Fig. 16 wheretween support trajectories in the very close neighborhood of
both linear and logarithmic plots are displayed. Numericallythe separatrix if a small number of turns is used. Clearly this
we found the population of the center island to 3.9% of thecan be a serious problem if the support trajectories have no
total population. relationship with the equilibrium distribution. Using a larger

We found out that the map method does a particularly badiumber of turns is a crude way to still get a map of some
job at estimating the relative population. We are not comparvalue.

We presented this example of the ALS to show that things
are not always simple even under the best circumstances.
Nevertheless the map method does produce reasonable num-
bers.

V. CONCLUSION

We presented a method which uses the symplectic trajec-
tories as support functions for representing a quasiarbitrary
distribution. It is quite clear that there are serious limitations
preventing a total generalization of the map method. How-
ever, there are also several topics we did not have the time or

FIG. 16. Results of 500 000 000 turns of brute force tracking ofspace to discuss which present potentially useful areas of
ALS. applications.
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(1) The estimate of lifetime, i.e., the creation of a mapmap which will reduce the synchrotron sloshing on the fixed
that has an aperture and thus does not conserve particle nupsint.

ber. So we conclude on both a note of hope and despair. There
(2) The study of rare events such as gas scattering. Thigre obviously applications for this method, but there are also

can be done by computing a map for the rare event alone anfgindamental limitations.

“adding” it to the ordinary radiative map. There are a lot of

tricks involved including the calculations of one-turn maps

by taking thenth root of a map. It is a large topic on its own. ACKNOWLEDGMENTS
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