
PHYSICAL REVIEW E OCTOBER 1999VOLUME 60, NUMBER 4
Maps for distributions and their time evolution
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Many dynamical stochastic processes occur ‘‘on top’’ of a deterministic process. We present a method
which uses the trajectory of the deterministic process as basis functions for quasiarbitrary distributions. A map
for the stochastic process can then be computed. This may have applications in electron storage rings or other
devices perturbed by a small stochasticity. In this paper we will look only at the most elementary applications
of the method.@S1063-651X~99!05310-6#

PACS number~s!: 29.20.2c, 02.50.Fz, 02.50.Ng
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I. INTRODUCTION

Predicting the time evolution of a distribution, even wh
all the mathematical properties of the system are known,
be a very difficult task. In this paper we present a meth
which assumes that the stochastic map is ‘‘near’’ the sy
plectic map and thus uses the invariants of the symple
map as support functions for a quasiarbitrary distribution

We limit the core of the discussion to one degree of fr
dom. We do this for two reasons. First it is simpler to intr
duce a new method in a simpler setting and, in this settin
is even beyond the scope of this introductory paper to
dress all the potential applications.

The second reason is more problematic: we are not
pable at this point of extending the method ‘‘correctly’’ in
multidimensional setting. Of course in accelerators t
might be the most important case. We hope the reader
nevertheless get useful ideas from this paper, if not for r
dynamics, maybe for other fields.

We acknowledge at the onset that this method was
proposed by Gerasimov@1# to Pauluhn and Mais at DESY
and that Pauluhn@2# did a preliminary testing in her thesis
This was fortunately unknown to us when we started
work because it might have discouraged us from going
further.

II. THEORETICAL DESCRIPTION OF THE METHOD

To introduce this technique it is best to limit ourselv
first to one-degree-of-freedom processes, that is to say
two-dimensional systems. We will also present a true o
dimensional example to illustrate the relative merits of
brute force, Irwin@3#, and map methods of this paper.

One has to be honest here: although some two-degre
freedom systems can be handled easily by this method
general there are severe complications. This isnot the case of
the brute force or Irwin’s method, which extend to high
dimensions rather easily.

Furthermore, we will assume that the stochastic proc
under consideration does not depend on the distribution
self. This invalidates processes involving intrabeam scat
PRE 601063-651X/99/60~4!/4793~18!/$15.00
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ing such as Touschek although they can be included in
method.

A. The map for the distribution

First consider an initial distributionf 0 in the phase space
variablesz5(x,p). Let us assume that, in the absence of a
stochastic process, it evolves under the action of a symp
tic one-turn mapm:

if z15m~z0!

then ;z f 1~z!5 f 0„m
21~z!…. ~1!

Since we will deal explicitly with functions, it is worth no
ticing that the action of the mapm on the function f is
equivalent, in the symplectic case, to the action of the sy
plectic mapM 21 as defined by Dragt~see Ref.@4# for ex-
planations!,

f 15 f 0+m215M21f 0 . ~2!

In the literature the mapM is called the ‘‘Koopman’’ op-
erator. Furthermore, the process of finding a basis forM
which is then usually truncated is called ‘‘Koopmanization
Standard perturbation theory whether expressed in term
Lie operators or other terms amounts to representing the
M in a monomial basis truncated at certain degree. Ham
tonian perturbation theory does the same thing on the g
erator of the mapM, the Hamiltonian of the system. Th
nonperturbative methods of Warnocket al. also amount to
representingM in a special basis more suitable to problem
near the short term dynamic aperture~very nonlinear!. In the
case of perturbation theory, the truncation of the matrix r
resentingM leads in general to an asymptotic series as o
tries to find invariants of the motion, that is to say, eigenv
tors of unity. For these reasons the choice of the basis for
expansion ofM is critical to the search of well-behave
quasi-invariants.

The operator which transforms a distribution isM 21 in
the symplectic case. In the case of an arbitrary map, i
called the Frobenius-Perron@5# operator~FP! and it acts in a
4793 © 1999 The American Physical Society
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4794 PRE 60ÉTIENNE FOREST AND DAVID S. ROBIN
space dual to the Koopman operator. It should be said tha
expansion of the KoopmanM in terms of monomials is
equivalent to a representation of the~FP! operator in terms of
moments. It is well known in accelerator physics that a m
ment expansion is notoriously inadequate for the study
lifetime or even equilibrium issues. Therefore in this pap
in effect, we will propose a better expansion set for the
operator in the presence of stochasticity and small damp

Thus, let us imagine that the rayz is modified by a sto-
chastic variableD,

z̄5z1D, ~3!

and thatD is governed by a distributionr~D,z!. Then the
distribution after one turn can be written as

Uf 0~z!5 f 1~z!5E f 0~m21@zD#!r~D;zD!dD. ~4!

This map is exact so far. It should be noted that, if the s
chastic process happens all along the ring, one can rigoro
integrate~or sum! along longitudinal positions where sto
chastic kicks occur:

Uf 0~z!5 f 1~z!5 R
s50

C E f 0~m0,s
21@zD#!rs~D;zD!dD ds.

~5!

In this paper we will use Eq.~4! without loss of generality
because the functionr can represent the integrated effect
rs over one turn or more.

B. The expansion set for the map

This is very nice and completely useless so far. The
map is truly a monstrous integro-differential equation;
what can we do? Traditionally, it is customary to convert t
equation into a differential equation neglecting higher or
moments of the random variableD. The resulting equation is
the Fokker-Planck equation. Indeed, if we include first a
second order moments ofD, we will get a differential equa-
tion for the functionf or equivalently for the FP operatorU.
The Fokker-Planck equation will look like the Vlasov equ
tion except for additional terms proportional to second p
tial derivatives in the distribution. These terms will lead
diffusion.

The Fokker-Planck equation is neither simple@6# to set up
nor to solve in the general case. However, the dimensiona
of the problem can be further reduced if one assumes tha
final distribution will sit on the invariants@7# of the symplec-
tic map. This is done, formally, by introducing a new set
variables (f,J) to replace the original vectorz5(x,p). It is
assumed that the set (f,J), consisting of one angle and on
action, totally normalizes the mapm or equivalently the
Hamiltonian which gave rise to this map. Thus we have

MJ5J+m5J. ~6!

Moreover, if we denote byas the canonical transformatio
connecting (x,p) to (f,J) at position ‘‘s, ’’ then the result-
ing mapn0,s in the new variables has the form
an
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if n0,s5as
21+m0,s+a0

and ~f,J!s5„as;1~x,p!,as;2~x,p!…

then Hn0,s;1~f,J!5f1m0,s~J!

n0,s;2~f,J!5J . ~7!

This map propagates a normalized ray from an arbitrary
sition s50 to a final positions by advancing the phasef an
amountm0,s(J). Obviously if ‘‘s’’ is a continuous length
along some reference curve, this will induce changes in
Hamiltonian or the associated Fokker-Planck equation.
deed that Hamiltonian part of the Fokker-Planck equat
~Vlasov! will leave invariant the function ofJ. If we further
average over the canonical anglef, then the resulting
Fokker-Planck equation depends onJ only ~see Sec. IV C 3!.
Obviously, by construction, the resulting distribution will d
pend on the invariant functionJ(x,p) only. This is justified
when the average phase advance coming from the stoch
term D is small compared to the tunem. Generally this
means that the damping must be small compared to the t

There are three problems associated with this formulat
First of all, as usual, we still have to solve a messy differe
tial equation while our most reliable model for the symple
tic ~and nonsymplectic! dynamics comes in the form of
tracking code. Hence just writing down an equation f
(x,p) is already a problem of major proportions. Second
we must still find the invariant coordinates (f,J); this is no
small task especially if they are to be fed into a different
equation in s, the longitudinal position around the ring
Thirdly, and most fundamentally, in the presence of islan
the variables (f,J) are, at best, only locally defined. Whil
we can check by tracking a large number of rays~or a ray for
a very long time! that the equilibrium distribution will sit
very nearly on invariant trajectories, we cannot find a c
nonical transformationa that will work over the entire phase
space. Within each island~and within tiny islands inside the
islands! one could get an approximate canonical transform
tion a, but these transformations cannot be smoothly inter
lated. This means that any method based on a differen
equation that tries to take advantage of the local existenc
an invariantJ will not work.

In the case of a differential equation, it is important
have a grid which is indexed in a continuous manner. F
example, if the invariantJ represents concentric curve
around the origin, then a discretization may work as follow
first we decide that the largest action will beĴ. This value is
picked by assuming that the distribution is almost null at t
large amplitude. Secondly, we decide to slice phase sp
into N orbits for the purpose of discretizing the differenti
equation. The concentric curves will be labeled by an inte
i ranging from 1 toN. For example,Ji , the i th trajectory,
can be given byi Ĵ/N. In this case, the derivatives with re
spect toJ that are needed in the solution of the Fokke
Planck equation will be obtained by taking divided diffe
ences. In the case of an integral equation, we will see
this is not necessary. We are free to label values ofJ used in
the discretization scheme in a completely arbitrary mann

Figure 1 displays an example with islands. A continuo
indexing scheme is not possible for the same reasons th
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globally definedJ is topologically impossible. The phas
space is divided into three regions: below the islands, in
islands, and above the islands. The trajectories are labele
follows: i 51,10 are below the islands,i 511,20 in the is-
lands, and finallyi 521,30 are the trajectories above the
land chain. It is important to realize that this labeling is no
totally arbitrary. One could randomly scramble the relatio
ship between the indexi and the topological features~trajec-
tory in this case! on the plot.

Now we are in a position to describe a distribution who
contours are the symplectic trajectories. Let us again de
by N the number of trajectories plotted. Then an arbitra
distribution f can be projected onto this contour by a y
undefined projection operatorp:

p~ f !5(
i 51

N

v iJi . ~8!

The quantitiesJi represent unit distributions concentrated
the i th trajectory.~They are Diracd functions in the variable
J.) In other words, the distributionf 51000J4 is a distribu-
tion of 1000 particles evenly distributed in the local phasef
on the fourth trajectory. Thus a distribution of 10 000 pa
ticles with 1000 on the first trajectory, 8000 on the seco
and 1000 on the fourth would be given by

1000J118000J211000J4 ~9!

or, equivalently by the component vectorv
5(1000,8000,0,1000,0,0,...,0). Again we must repeat tha
while it is convenient that the indexi progresses more or les
monotonically as we go away from the origin, it is not ne
essary.

Finally we must say a few words about the projectionp.
If we take any distributionf that depends only onJ, then
due to the coarseness of the grid, it will not be possible
represent it exactly. The best we can do is to projectf by
some approximate scheme onto the grid$Ji u i 51,N%. This
projection is done with a prescription denoted byp. Since an
arbitrary distribution can be written in terms of sharp

FIG. 1. Support grid with three regions.
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peaked~Dirac d functions! distributions, we only need to
definep on an individual phase space point. Thus if a p
ticle lands at coordinatesz0 between the trajectoriesJi and
Jk , we will then assume that this ray contributes to bothJi
and Jk using a particle number preserving algorithm. F
example, suppose we determine that the ‘‘distance’’ betw
the trajectoriesJi and Jk is d, then a ray~Dirac d distribu-
tion! falling a ‘‘distance’’ di from Ji will result in a new
distribution

p„d~z2z0!…5
@d2di #Ji1diJk

d
. ~10!

The details of the projectionp will turn out to be quite
irrelevant. If the reader needs a concrete model, he can im
ine that in the case of theJi ’s being concentric circles, the
distance between them could be measured along the ra
direction.

In summary, we have a rather coarse phase plot as
support grid and a projection operatorp which allows us to
project ad function distribution on the neighboring trajecto
ries.

C. The map restricted to the grid

It is instructive to make an analogy with quantum m
chanics. The symplectic map divides the phase space
energy levels. Indeed the Bohr-Sommerfeld quantizat
rules would involve precisely the actionJ. However, thisJ
is only locally defined, thus we need several ‘‘quantum
numbers: first we need an integer describing the region
phase space we are sitting in. In the example of Fig. 1,
index takes the values 1, 2, and 3. Secondly, within e
region, a second index ranges from 1 to 10 in the exampl
Fig. 1. Thus we could label our support set$Ji u i 51,N% by an
equivalent set$Jkluk51,k̂; l 51,l k%. In our example,k̂ is 3
and l k is 10 for all k’s. This new set is useful when discus
ing connection with the continuous case. The indexk speci-
fies a canonical transformationak which locally assigns a
numerical meaning to the action variable. If we follow th
analogy further, we can translate the entire computation
the map into a quantum equivalent. Our goal will be to co
pute the probability that a stateJkl jumps to a new state
Jk8 l 8 . The probability of the jump is governed by the fun
tion r~D;z! or, more appropriately, by the projection of th
function onto a space consisting ofJ-dependent distributions
only.

Physically this is not a bad approximation even far fro
equilibrium. Suppose we inject a beam off axis, then t
things will happen. The beam, due to nonlinear shear~fila-
mentation!, will evolve rapidly towards aJ-dependent distri-
bution. However, even in the linear case when filamentat
is null, the beam will visit the entire length of the trajecto
due to the phase advance. This means that the ergodic a
age over a few turns will mimic the effect of an even
distributed density in the phasef associated to the loca
actionJ. Thus two effects rapidly combine so as to vindica
our choice for the grid.

We now proceed to restrict the mapU on the grid using
our quantumlike notation. This will temporarily permit us
retain a connection with the continuous case. It will
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4796 PRE 60ÉTIENNE FOREST AND DAVID S. ROBIN
dropped later. We start with an arbitrary distribution on t
grid as in Eq.~8!,

f 0~J, j !5 (
k51

k̂

(
l 51

l k

vkld~J2Jkl!d jk . ~11!

In this expression, the variableJ is a true action in thej th
region of phase space. Thus the functiond(J2Jkl) is a Dirac
delta function whiled jk is a Kronecker delta. We substitut
this result into Eq.~4! for the operatorU:

Uf 0~f,J, j !5E (
k51

k̂

(
l 51

l k

vkld~J2Jkl

2DJ!d j 2D jkr~Df,DJ,D j ;f2Df,JDJ, j

2D j !dD. ~12!

We can now sum/integrate in the variables (DJ,D j ),

Uf 0~f,J, j !5 (
k51

k̂

(
l 51

l k E vklr~Df,J2Jkl , j 2k;f

2Df,Jkl ,k!dDf. ~13!

Let us change the integration variable fromDf to a quantity
fkl5f2Df:

Uf 0~f,J, j !5 (
k51

k̂

(
l 51

l k

vklE r~f2fkl ,J2Jkl , j

2k;fkl ,Jkl ,k!dfkl . ~14!

Finally, under the assumption of this paper, a distribut
which is uniform along a trajectory stays uniform. Thus w
must have approximately

]

]f E r~f2fkl ,J2Jkl , j 2k;fkl ,Jkl ,k!dfkl'0,

~15!

E r~f2fkl ,J2Jkl , j 2k;fkl ,Jkl ,k!dfkl'U~J, j ;Jkl ,k!.

We substitute the operatorU in Eq. ~14!,

Uf 0~f,J, j !5 (
k51

k̂

(
l 51

l k

U~J, j ;Jkl ,k!vkl . ~16!

Equation~16! is extremely simple to interpret: The kern
elementU(J, j ;Jkl ,k) connects a discrete distribution on th
support grid denoted here by the double index (Jkl ,k) to the
potentially continuous set of trajectories (J, j ). In reality we
must project this information on the grid and this is whe
the projectionp comes into play. The result

p„U~J, j ;Jkl ,k!…5 (
k51

k̂

(
l51

lk

Ukl;kld~J2Jkl!d j k ~17!
n

is now substituted into Eq.~16!,

pUf 0~f,J, j !5 (
k51

k̂

(
l 51

l k

(
k51

k̂

(
l51

lk

Ukl;kld~J2Jkl!d j kvkl .

~18!

At this stage the pretense of a continuous theory can
dropped and we can replace the double indiceskl andkl by
single indicesa andb. Thanks to the projectionp, the map
U has been restricted to the grid, and we can extract a tr
fer matrix Uab for the map:

wa5 (
b51

N

Uabvb or w5Uv,

where w5(
i 51

N

wiJi and v5(
i 51

N

v iJi . ~19!

D. Actual computation of Uab

Let us start with the main process leading to an equi
rium distribution, namely, radiation. We will assume that
computer code exists which can provide us reliable simu
tions without radiation~symplectic!, with classical radiation,
and with Monte Carlo stochastic corrections to the radiat
process. We further assume that this code has a grap
user interface~GUI! interface so that the user can select t
grid and erase undesirable trajectories as he goes along

The first challenge is to map out the symplectic trajec
ries on a relatively coarse grid and to select points on th
trajectories which are equally spaced in phase. Suppose
are looking at thebth trajectory in an attempt to comput
Uab . This trajectory is started by clicking on an initial rayz0

on the screen. We keep tracking until the trajectory has
ished painting an area on the screen. At this point, afterTb
iterations, the trajectory is recurrent as far as the pixel re
lution of the screen is concerned. It has completely filled
invariant torus on which it is assumed to sit. The total t
jectory is given by a setJb5$zi u i 50,Tb% where iterates are
listed consecutively. Now consider the subsetI b5$zmkuk
51,Nb ; mk,Tb% which representsNb particles equally
spaced in phase. Furthermore, by plotting these separate
using a very different color, we can ensure that they a
populate the torus more or less evenly. The computation
the matrix elementUab will use these particles. How doe
this work? Let us assume that the mapU represents aq-turn
operator. Furthermore, we now introduce the mapmS , the
stochastic extension of the symplectic mapm, and we build
a new setI b

q,M using the subsetI b . At every pointzPI b we
launch the mapmS for q iterations and we repeat this sto
chastic experimentM times. We then obtain a new setI b

q,M ,
the union of all our experiments,
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To evaluateUab we use the projectionp on a single ray
~Dirac d distribution! as we hinted in the preceding sectio
We take a rayzPI b

q,M and project it on the grids using Eq
~10!. In general, a ray will distribute itself onto~two! neigh-
boring grid points as in Eq.~10!:

p@z#5(
i 51

N

di
mkJi , with (

i 51

N

di
mk51. ~21!

We then sum all contributions from the setI b
q,M :

Uab5
1

M (
e51

M
1

Nb
(
k51

Nb

@da;e
mk# results of eth experiment. ~22!

The process is repeated for all support curves so thatb runs
from 1 to N. In the example of Fig. 1 we would repeat th
process 30 times.

Let us say a few words about the curve with the larg
amplitude. Usually we can select a trajectory at a large a
plitude which encompasses all the other support grid poi
We can call this curve theNth trajectory. A particle landing
outside this trajectory poses a boundary condition probl
In this paper we opted to make this last boundary absorb
that is to say, that rays falling outside are assigned toJN .

III. SOME PROPERTIES OF THE MAP

In this section we examine some properties of the m
Rigorous statements will be made only for the map restric
to the grid. The reader will notice that many of the sta
ments will apply to a general grid instead of a grid made
symplectic trajectories.

A. The existence of a fixed point

The map restricted to the grid must have a least one fi
point. We know that the particle numberQ(v) is preserved
by construction,

Q~v!5(
i 51

N

v i5Q~Uv!. ~23!

In addition, we also know thatU will preserve the positive
nature of the componentv i ’s. Thus if we start with a physi-
cal distributionv i>0, not only will the particle number sta
constant but so will the positive definite nature of the dis
bution. Thus the set of all distributions with a given numb
of particlesQ0 ,

D~Q0!5H vUv5(
i 51

N

v i ;v i>0J , ~24!

is also preserved under the action ofU.
t
-

s.

.
g,

p.
d
-
f

d

-
r

It is easy to show that this set is a convex compact set.
Brouwer’s fixed point@8# theorem the mapU, provided it is
continuous, must have a fixed point.

Finally we will ~almost! prove later that the map is con
tracting; it will converge to the equilibrium distribution a
though it may not be unique. To illustrate this consider
strange process for which radiation is present only on
inner trajectories. For example, looking at Fig. 1, we assu
that damping is present on trajectories 1–10 around the
gin. We also assume that fluctuations are present from
jectory 1 to 9 with a zero probability of making a jump to th
tenth. It is easy to construct such an imaginary system.
clear that the inner particles would settle on some equi
rium orbit and that the outer orbits would be on the sympl
tic trajectories. Essentially the outside would be a pro
beam with infinite degeneracy while the inside would
‘‘electron’’ in behavior.

The reader must remember that the existence of an e
librium orbit is proven here on the grid; in some cases
result is totally unacceptable. This usually will reflect th
fact that the grid is no longer adequate. For example, if o
diffusion is present, the beam will slowly crawl out until
bounces around the maximal grid trajectoryJN . This is un-
physical; in the real system it keeps diffusing forever~well,
not really...there has to be a beam pipe somewhere!.

All of this implies that if we spend time proving theorem
for our grid system, it may not be applicable to the real thin
Nevertheless we will give proofs of the various assertio
since they teach us a lot about the nature of the system
constructed.

The existence of a fixed point has already been mentio
and is the result of Brouwer’s fixed point theorem. This r
sult extends to the case of ar-dependentU, i.e., a nonlinear
U. ~We mentioned that the mapU was dual to the mapM in
the symplectic case. One may ask how a matrix of infin
dimension can become ‘‘nonlinear’’ once more...of cour
this happens because the original problem had a greate
mensionality than first contemplated since the nonlineari
in U came from the interactions between the particles
intrabeam scattering.! Indeed if we add density-depende
diffusion and construct the projectionp so as to preserve th
particle number, the conditions for the application of t
theorem will still be satisfied and thus there must be a fix
point. The next important question is whether the map
contracting. From now on the discussion focuses on the
ear case.

B. Contraction: All eigenvalues are<1

The issue is this: will an initial distribution settle down o
an equilibrium or oscillate? First we prove that the eigenv
ues have a modulus less than or equal to one.~One notes that
l521 prevents contraction from taking place. This w
pointed out by Bob Warnock.!
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Suppose thatv is an arbitrary real vector. It can be writte
as

v5v12v2 , v1 i5max~0,v i !, v2 i5max~0,2v i !.
~25!

The two vectors are orthogonal, (v1 ,v2)50, and non-
negative:v1>0,v2>0. Nonzero components ofv1 corre-
spond to zero components ofv2 and vice versa. Also,

(
i

~Uv ! i5(
i

@~Uv1! i2~Uv2! i #5(
i

v i ,

becauseU on non-negative vectors conserves particle nu
ber.

Now suppose thatv is an eigenvector with eigenvaluel.
Then by the preceding result,( iv i5l( iv i . Either ~a! l
51, or ~b! ( iv i50. Let us pursue~b! in the case of reall.
The corresponding eigenvector may be assumed to be
since real and imaginary parts, if linearly independent, wo
simply amount to two real eigenvectors with the same eig
value. Now we can write

Uv15v18 1Dv28 ,

wherev1 i8 Þ0 if and only ifv1 iÞ0 andDv2 i8 Þ0 if and only
if v2iÞ0. If v i50 we arbitrarily setDv2 i8 50, and notice
thatv1 i8 may possibly be nonzero. That is,Uv1 may have a
nonzero component where neitherv1 nor v2 does. Now,
sinceUv1>0, we havev18 >0 andDv28 >0. Of course, we
also make the analogous breakup ofUv2 .

Now we have

l~v12v2!5~v18 2Dv18 !2~v28 2Dv28 !. ~26!

We cannot, however, always draw the conclusion that

lv15v18 2Dv18

since, as mentioned above,v18 may have nonzero compo
nents in positions wherev1 has none. Such componen
must be cancelled, however, by corresponding compon
of v28 , in order that Eq.~26! be satisfied. Let us then defin
v̂1 i5v1 i8 if v iÞ0 andv̂1 i50 if v i50. Then we have

lv15 v̂12Dv18 ,

and the corresponding equation for particle numbers,

lN15lN5N̂12DN1.

But by the above we also have

N18 1DN25N>N̂11DN2

hence by that

lN<N2DN12DN2<N. ~27!

Thus, we conclude that the modulus of the eigenvalues m
be less than or equal to one.

Now it is obvious that the map will contract to the su
space spanned by the eigenvalues of unit modulus. Seco
-

al,
d
-

ts

st

ly,

only the eigenvectors corresponding tol51 can be physical
stationary distributions. Unfortunately it is not possible
reject the possibility that a linear combination of the oth
eigenvectors is present. In that case, the final distribution
oscillate in time so that its ergodic average will be the ‘‘eq
librium’’ distribution. Consider the following case:

U5S 0 1 0

0 0 1

1 0 0
D ~28!

for which all the eigenvalues are on the unit circle. T
eigenvectors are

v15S 1,
211 i)

2
,

212 i)

2 D ,

v25S 1,
212 i)

2
,

211 i)

2 D , ~29!

v35~1,1,1!.

This map could represent a symplectic map with a third
der island chain. Obviously if we start with one particle
island number 1,

v05~1,0,0!, ~30!

then it will jump to island 3 and then island 2 and final
back to 1.

Unv05 1
3 $ei2pn/3v11e2 i2pn/3v2%1~ 1

3 , 1
3 , 1

3 !. ~31!

Therefore the ergodic average will be given by the com
nent along the eigenvector of unit eigenvalue.

It should be pointed out that we will not see anything li
that in our simulation since we purposely lump the islan
together. Therefore we can safely assume~on physical
grounds! that there are no eigenvectors of modulus 1 ot
than equilibrium distributions, in which case the map is co
tracting. The existence ofl521 eigenvectors can alway
be checked on the map itself.

C. Uniqueness of the equilibrium distribution: Connected grid

To prove the uniqueness of the equilibrium distributio
we must assume that the grid is connected. We say tha
grid is fully connected by the mapU if a distribution on the
grid Jk will eventually diffuse to an arbitrary gridJm after
forward or backward propagation under the action ofU. If
we denote thenth power ofU by Un then we say that the
map connects all of phase space if

;k;m'nÞ0 such thatUmk
n Þ0. ~32!

The prime example of a totally disconnected grid is the ori
nal symplectic map described on theJk’s. In this case the
mapU is just the identity and thus there is no communic
tion between the various support distributions.

Our goal is to prove that the equilibrium distribution
unique when the mapU satisfies condition~32!. First we
prove that an equilibrium distributionv of the form given by
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Eq. ~25! must be such thatv1 or v2 vanishes, i.e., the equi
librium is physical. We start by assuming that condition~32!
is satisfied and thus there exists a power ofU for which a
part of the vectorv1 gets mapped intov2 and/or vice versa.
Thus, for this map, Eq.~27! applies withl51:

N<N2DN12DN2<N. ~33!

Since at least one of the vectors is assumed to make con
tion with the other~let us sayv1), then it must be true tha

DN1.0, ~34!

from which we can immediately conclude that

N<N2DN1 , ~35!

which is obviously a contradiction.
Thus, since we assumed that the map is connected, it

lows that a fixed point must be physical~all positive compo-
nents!.

D. Uniqueness in the connected case

Uniqueness is proven by assuming the existence of
fixed points and constructing a situation contradicting w
was just proven in the preceding section. We assume
there exist at least two equilibriav andw.

1. Case v–w50

This leads to an immediate contradiction: it suffices
consider the new equilibriumv2w which has exactly the
form given by Eq.~25!. We know that such a distribution
cannot exist as proven in Sec. III C.

2. Case v–wÞ0

We construct a vectorg perpendicular tov,

w5g1
v•w

v•v
v, ~36!

and notice thatg itself must be an equilibrium. From th
results of the preceding section, the components ofg must be
all positive or all negative. Thus eitherg or 2g is physical.
But notice thatg•v50, this leads to a contradiction with th
first case. Therefore the equilibrium is unique. Q.E.D.

We conclude that in the case of the mapU, there must be
at least one fixed point. In the linear case, the map mus
contracting and thus reach an equilibrium. Finally, if the m
is connected as defined in Sec. III C, the equilibrium
unique.

These results are in agreement with our intuition. As
said before, we do get an unphysical result when only dif
sion is present or equivalently when our last gridĴ is not
located far enough so as to enclose most of the beam.
reader might wonder why the ‘‘connectedness’’ includ
backwards propagation: a linear map with damping alo
does have one equilibrium, the origin, but connectednes
realized only with backwards propagation. The same is t
with maps which have limited diffusion. If there is an upp
limit to the magnitude of the random kick a particle receiv
then it is possible to show that the equilibrium distributi
ec-
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,

vanishes at a certain amplitude. This amplitude correspo
to a region where the maximum change due to a stocha
kick is always less than the damping towards the origin.
the purely damped case, the backwards connectedness
sential to prove the uniqueness of the distribution.

Finally it is intuitively obvious that, for a disconnecte
case, the number of connected regions will determine
degeneracies in the final distribution. Again the pure
damped case with islands is a good example to think ab

E. Conclusion on the theoretical digressions

We have set down the basic features of the map we int
to construct. Nevertheless this paper is truly worthless w
out reproducibleexamples. One needs to get a feel for t
adequacy of the method and indeed its failures.

As mentioned before, we restrict ourselves to system
one degree of freedom or approximately reducible to o
degree of freedom. We believe that there is a lot to le
about this technique and its relationship with other meth
even in this restricted environment.

IV. EXAMPLES AND RESULTS

In this section we will present first a simple beam-bea
map where we, the authors, control all the aspects of
simulation. We will then simplify even further and produce
ridiculous~unphysical! one-dimensional map. This map wi
permit us to understand the relationship between differ
methods of calculation, namely, the brute force method,
Irwin method, and the method presented here.

Next we will present an example extracted from the B
keley Advanced Light Source~ALS!. This example present
some challenges even when restricted to one degree of
dom.

A. A little beam-beam map

We will show here some tracking results of the origin
beam-beam map suggested by Hirata. This map consists
of a rotationr which mimics the ring:

r 1~x,p!5cos~m0!x1sin~m0!p,
~37!

r 2~x,p!5cos~m0!p2sin~m0!x.

Then it is followed by a one-dimensional beam-beam kickb:

b1~x,p!5x,
~38!

b2~x,p!5p18pj
exp~2x2/2!21

x
.

The variablej measures the first order linear tune shift~in
revolution unit! resulting from the beam-beam force.

The complete map for the symplectic system denoted
m in the previous sections is just

m5b+r . ~39!

The ‘‘radiative’’ map was constructed by adding a dampi
mapd given by

d~x,p!5l~x,p!5e2a~x,p!, ~40!
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4800 PRE 60ÉTIENNE FOREST AND DAVID S. ROBIN
followed by a stochastic mapS,

S~x,p!5~x1D,p!. ~41!

The variableD was chosen naively to take the values6d
with equal probability. The constantd can be related to the
nominal beam sizes of the linear map. For example, the e
librium emittance of the linear map is

«eq5
d2

12l2 , ~42!

and the nominal beam size~or nominal sigma! is just

s5
d

A2~12l2!
'

d

2Aa
. ~43!

The complete stochastic mapmS , entering in Eq.~20!, is the
composition of all these maps,

~44!

In Eq. ~44! we also introduce the damped deterministic m
ml . This map, which contains the main component of cl
sical radiation, is deterministic. It allows us to check t
assertion that the full map does not destroy the symple
structure too much. For example, in order to increase
speed of the simulation, one is tempted to increase the da
ing and the fluctuation components ofmS , this cannot be
done if the damped mapml dramatically changes the islan
size. In practice it means that big islands, under a sm
damped forced, become basins of attraction for their resp
tive elliptic points. This can be totally destroyed for larg
damping decrements.

FIG. 2. Support grid.
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B. Where is the distribution?

Let us now turn to some real simulations using the lit
map of Sec. IV A. The parameters of the map were selec
as follows:

n05
m0

2p
50.23,

j51.531022,

l5121023, ~45!

d5931022. ~46!

The first stage in our method consists in producing
phase space portrait of the support distribution.

In Fig. 2 we see 55 trajectories which will be used
support the distribution. The reader will appreciate that
computation of a one-turn map is extremely inaccurate
cause the actual map would depend critically on the pro
tion operatorp that projects an arbitrary distribution on th
chosen grid. The reason for this is simple: in one turn p
ticles do not migrate far as they stay in the immediate nei
borhood of the support distribution from which they orig
nate. For this reason we selected here a 200-turn map, i.
map representing about 20% of a damping time.

In the calculation of the mapU we arbitrarily launch
MNb51000 trajectories twice. These are denoted by the
bels ‘‘1’’ and ‘‘2’’ in Fig. 3. We also did a ‘‘manual com-
putation.’’ By this we mean that we watched the vario
coefficientsUab for a fixedb being plotted as they are com
puted; we then stopped the execution when the logarith
bar plot seemed to settle down. We found out that this to
between 2000 and 4000 trajectories. This is shown in cu
number 3. The agreement is quite good and, in particular,
agreement is equally good~or bad! in the core and the tail. In
fact the core presents a special problem: at small amplit
the damping will always be too small and thus the details
its effect depend on the projection algorithmp.

We can see the tail results in the logarithmic plot
Fig. 4.

FIG. 3. Comparison of brute force and map calculations.
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The reader notices that we made two brute force sim
tions: one simulation with 3.33109 turns and a simulation
with 3303106 turns. We present both numerical results so
to gauge the accuracy of the brute force simulation. T
results appear to be quite good.

In the next section we investigate the big island case
we will see, it is very hard to obtain reliable results.

C. Big islands: Study with the beam-beam map

When the nominal beam size becomes small compare
the size of the islands we can expect the beam to split
what appears to be two independent distributions: one di
bution in the main island centered around the origin and
distribution around the secondary islands—the fourth or
islands in Fig. 2. In such a case the equilibrium distribut
may be very hard to compute~see Sec. IV E!. In particular,
brute force tracking may fail as the test particle spends
eternity in one island. Indeed the separatrix is now situate
the ‘‘tail’’ of this distribution and thus particles seldom reac
it. It is also our belief that the Irwin method may also fa
unless it is modified to include two cores; this will be exa
ined in Sec. IV D.

Indeed the brute force and the plain Irwin method will fa
qualitatively unless a prohibitive number of turns and/or p
ticles are used. On the other hand, our method will alw
produce good qualitative results but will have a hard ti
nailing down the exact ratio if the islands are truly very b

Let us look at two cases of the beam-beam map. In b
cases the deterministic parts of the maps are identical,

n05
m0

2p
50.24,

j51.531022, ~47!

l5121023,

but the fluctuation is different,

FIG. 4. Logarithmic plot of the tail.
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d5931022, s51.42 ~case 1!,
~48!

d5331022, s54.7431021 ~case 2!.

The support grid for our simulations is given by Fig. 5.
The next plot shows a tridimensional plot of the bru

force simulations for both values of the fluctuation para
eters.

The important number to consider here is the transfer
between islands. Since the brute force method tracks a
ticle for a long time, it is important that it visits all the
allowable phase space. Once the islands start separatin
the fluctuation strength diminishes, then the probability
crossing from one island to the other also diminishes. In
case ofd50.03 we see that a particle transferred on aver
once every 370 000 turns, while in the case ofd50.09 the
transfer rate is greatly enhanced at one transfer per 5
turns.

1. Back of the envelope explanation of the results

To understand what is going on here let us reverse
problem. Let us think of two distributions sitting at equilib
rium very far from each other; we assume that each one
around its own equilibrium center. This can be realiz
mathematically by inventing a system with a discontinuo
behavior around a boundary which separates phase s
into two identical linear regions.~We will study such a fake
system in Sec. IV D.! This is a little bit what happens in th
presence of islands. Furthermore, if the random kick ha
finite maximum value~as in our case!, then the distribution
will fall to zero at some maximum amplitude. Let us call th
amplitudeâ. In addition, if we assume that the center of ea
distribution is separated by a distance greater than 2â, then
there is no contact possible between each region and the
equilibria are centered around their respective fixed poi
The mapU for such a system would have two eigenvecto
with unit eigenvalues.

If we reduce the distance between the fixed points be
the critical value of 2â, then we expect the distribution t

FIG. 5. Support grid for the big island case.
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start mixing until a single equilibrium is reached. Because
the symmetry, we expect the equilibrium distribution to ha
an identical number of particles, namely, (N11N2)/2 where
Ni is the initial population of thei th region. Parenthetically i
is interesting to see how the two independent eigenvec
must combine so as to produce one physical distribution w
eigenvalue one and one unphysical distribution with an
genvalue less than one and a population of zero. Remem
that all the eigenvectors of the mapU must have a popula
tion of zero unless they are equilibrium distributions. Th
before contact, the two independent vectors are cent
around their respective fixed points. For an infinitesimal c
tact, a single equilibrium distribution is formed as the sum
the two previous equilibria with equal population. The oth
eigenvector, with an eigenvalue infinitesimally below one
made of the difference of the two previous equilibria w
equal population. In actual physical cases, such as those
played in Fig. 6, one does indeed get a second eigenve
with components of opposite signs in each island as is sh
in Fig. 7.

The first question to ask is how big isâ? For our simple
stochastic distribution it can be computed exactly in the c
of a linear map. However, let us just say that it is bigger th
the nominals of Eq. ~43! and that it is typically of order
s/Aa. Therefore for a damping ofa50.001 we expect tha
â will be about 30 times larger thans. The exact ratio@9#
depends on the details of the linear map and the stoch
process.

Calling the distances between the two fixed points 2D,
then we can say that for values ofD a bit smaller thanâ it

FIG. 6. Brute force simulations.

FIG. 7. The three leading eigenvectors ford50.03.
f
e

rs
h
i-
er

s
ed
-
f
r
s

is-
or,
n

e
n

tic

would take an astronomical time to reach equilibrium. Ho
ever, if we bring them suddenly into closer contact, we c
assume that the two distributions are nearly Gaussian
estimate the relaxation time. The rate of change~per turn! for
the population of a Gaussian distribution is given at lar
amplitude by the approximate formula@10,7#

dN

dn
5N

2a«

«0
exp~2«/«0!5N

a«

s2 expS 2
«

2s2D . ~49!

For example, at a radiusA«55s, the relaxation time~ap-
proximatelyN/dN) is

T5
N

dN
5

1

102325
expS 25

2 D'1.073107. ~50!

This large number indicates that the two distributions w
take more than 103109 turns to reach equilibrium. This is a
the limit of our calculational abilities. Let us look at the plo
of Fig. 5 and estimate the surface enclosed by the separa
In the units of the graph, we get an area of 10.25 for
quasirectangle around the origin. This is equal top«, and
thus ford50.03

«

s2 '
10.25

p~0.414!2 '19, ~51!

leading to a relaxation time

T5NS dN

dnD 21

'73105. ~52!

This number is not inconsistent with the transfer rate fou
for the cased50.003 despite the handwaving we used: w
assume that the islands are of equal size and we negle
distortions of the linear dynamics. In any event we ju
wanted a ‘‘ballpark’’ number.

2. Explanation of the results using the eigenvectors

It is very interesting, in light of the discussion of Se
IV C 1, to plot the eigenvectors of the map. In particular,
us look at the cased50.03. It is given in Fig. 7.

FIG. 8. The three leading eigenvectors ford50.09.
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The first curve depicts the equilibrium distribution whic
goes nearly to zero between the islands. The second c
shows the second eigenvector, the one with an eigenv
closest to one.~Please notice that the equilibrium is thus t
‘‘zeroth’’ eigenvector in Figs. 7 and 8.! As expected, it is
made of a linear combination of the first island and the s
ond island distribution. The fourth and fifth curves show t
same eigenvector with two different normalizations. T
reader will notice that the fourth curve follows the first bum
of the equilibrium distribution very well while the fifth curv
is almost on top of the second bump; thus this calculat
vindicates what was said in the preceding section.

The third curve represents the second eigenvector.
reader will notice that it looks very much like a derivative
the equilibrium distribution. This eigenvector would ha
been the leading eigenvector in a more conventional mo
tonically decreasing distribution. The local maxima of t
distribution have a population close to zero with a high g
dient while the regions of high gradient are now flat. In t
case of a simple system and under the Fokker-Planck
proximation, it can be proven that the eigenvectors are
lated to the Laguerre polynomial of order zero and do h
an increasing number of zeros as their eigenvalue decre

We can therefore say that the rate of transfer betw
islands is controlled by the eigenvaluel1 while the mixing
within each island is controlled byl2 . In a case without a
big isolated island, thenl2 becomesl1 . In Fig. 8 we display
again the first three eigenvectors. The reader will notice t
despite the clear existence of a populated island, the se
eigenvalue has a rather messy shape.

In the case ofd50.03, the first eigenvalue~for one turn!
was computed to bel151 – (1.14731025). Therefore, if we
assume~incorrectly! that the probability of jumping from
one island to the next is given bym1512l151.147
31025 and that the number of jumps obeys a Poisson
tribution, then we can expect a jump everym1

21 turns, that is,
every 87 000 turns.

In the next section, we show how the Fokker-Planck tre
ment gives a similar result in the linear case.

3. The Fokker-Planck treatment

In this paper, we have avoided the Fokker-Planck tre
ment completely. Nevertheless it is interesting to see how
eigenvectors come out of the linear problem in cases wh
we can solve analytically.

The idea here is to derive a stochastic operator forU in
differential form rather than the more correct integral for
Let us look at the effect of the mapS+d of Eq. ~47! on an
arbitrary distributionf . It is given by the exact relation

f̄ 5E
D
e2a f ~eax2D1 ,eap2D2!r~DW !dDW . ~53!

Equation ~53! refers only to the stochastic part~damping
included! of the map. To this we must add the mapm which
is purely deterministic:

Uf 5 f̄ +m5H E
D
e2a f ~eax2D1 ,eap2D2!r~DW !dDW J +m21.

~54!
ve
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Let us concentrate on the stochastic part. If we assume
the damping and the stochastic kick are small, we can
pand the integral as follows:

f̄ 5E
D
H f 12a f 2¹ f •DW 1axW•¹ f 1

1

2
D iD j] i] j f J r~DW !dDW .

~55!

We can now perform the integral over the stochastic kick

where we assumed̂DW &50. ~56!
We have introduced the timelike parameter ‘‘n’’ to de-

note the turn number. Obviously we can integrate this eq
tion with respect to ‘‘n’’ and this will not change the results
to leading order:

f̄ 5exp~Ŝ ! f ,

where Ŝ5a$21xW•¹W %1
1

2
^D iD j&] i] j . ~57!

We can now express the full one-turn mapU as

U f 5$exp~Ŝ ! f %+m21

~58!

or U5M21 exp~Ŝ ! where M21f 5
de f

f +m21.

The mapM 21 is the usual symplectic map which can b
expressed in terms of Poisson bracket Lie operators.

Now let us perform a phase average. Since we have g
through the trouble of writing a propagator for our map,
us perform a canonical transformation on it:

~59!

By assumption the canonical transformation turns the sy
plectic map into a rotation. Now let us compute the effect

A on the stochastic operatorŜ. Let us start by examining the
transformation properties of a regular deterministic vec
field. They are given by the formula~repeated indices are
summed over!

AFi] iA215Gi] i⇒Gi5~Fa]aai
21!+a. ~60!

Next we should examine the transformational properties o
diffusion operator of the typeDi j ] i] j . In general, if the ca-
nonical transformationA is nonlinear, then the diffusion op
erator will transform into the sum of a diffusion operator a
a deterministic vector field. The formula is given by

ADi j ] i] jA215D̄ i j ] i] j1D̄ i] i ,
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4804 PRE 60ÉTIENNE FOREST AND DAVID S. ROBIN
D̄ i j 5$Dab]aai
21]baj

21%+a, ~61!

D̄ i5$Dab]a]bai
21%+a.

Let us assume that the mapm is just a linear map and thus
can be normalized by a regular Courant-Snyder transfor
tion:

a1
21~x,p!5

1

Ab
x,
y
ke
s

ne
a-

a2
21~x,p!5

a

Ab
x1Abp.

If we substitute this transformation into Eq.~61!, we get the
following results:
~62!

~63!
ver
he

st

d to

the

oly-

ur-
This operator of Eq.~63! is two dimensional and completel
equivalent to the original operator. However, we would li
to average over the phase of the symplectic motion. Thi
best done by introducing another~nonlinear! transformation
into the action angle variables (f,J). The transformation
analogous to that of Eq.~62! is just

c1
21~x1 ,x2!52tan21

x1

x2
,

c2
21~x1 ,x2!5

x1
21x2

2

2
,

or equivalently

c1~x1 ,x2!5A2x2 cosx1 ,
~64!

c2~x1 ,x2!52A2x2 sinx1 .

Since we are going to ignore any angle dependence, we
only to compute theD̄2 and D̄22 terms of Eq.~61!. After
some algebra, we obtain the results

D̄25D118 1D228 ,
~65!

D̄2252J~D118 cos2 f1D228 sin2 f2D128 sin 2f!.

We may now substitute the results of Eq.~63! into Eq. ~65!
and average over the phasef. The total averaged map̂U&
becomes

^U&5expS ]

]J H 2aJ1
D

2
J

]

]J J D ,

~66!
D5g^D1

2&12a^D1
2D2&1b^D2

2&.
is

ed

The symplectic part of the mapR21 leaves any function ofJ
invariant and thus is just the identity once we average o
f. It is interesting to investigate the eigenfunctions of t
operator̂ U&:

]

]J H 2aJ1
D

2
J

]

]J J wk5lkwk . ~67!

Let us first look at the equilibrium distribution, which mu
obviously obey

]

]J H 2aJ1
D

2
J

]

]J J w050, ~68!

and have a finite integral. The answer can be easily foun
be

w0~J!5J0
21 exp~2J/J0!, where J05

D

4a
. ~69!

The next step consists in writing a general eigenvector as
product of an unknown functionp and the equilibriumw0 .
The resulting equation forp is

Jp̈1~12J/J0! ṗ5
2lk

D
p. ~70!

The solutions are expressible in terms of the Laguerre p
nomials:

wk~J!5w0~J!Lk~J/J0!,
~71!

lk522ak, k50,1,2,... .

The Laguerre polynomials can be obtained from the rec
sion relation

Lk~x!5
1

k!
ex

dk

dxk $e2xxk%. ~72!
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The reader will notice that the eigenvectorw1 has a single
zero at J0 and thus looks like the derivative ofw0 with
respect to the radiusr 5A2J. ~Not exactly, since the zero o
the derivative is atJ0/2.) Finally, we see that the eigenvalu
of the exponential operators are given by the formula explk)
or exp(22ak).

Therefore as one would expect in a one-island situat
the modes damp at a rate consistent with the damping of
deterministic motion. This is why we often track a distrib
tion of the order of a few damping times to get a general id
of the core equilibrium distribution. Obviously this must fa
in a large island case.

D. Big islands: A one-dimensional fake map

The following question arises. When the islands are se
rated beyond the ability of brute force tracking to work, wh
can we expect from our map method, what can we exp
from the Irwin method?

To understand the relative merits of all the methods,
will create a true one-dimensional problem. Consider the
lowing system defined for positivex only:

;x.0 m~x!5x,

d~x!5 Hlx
x2D2l~x2D2x!

if x,xmid

if x2D.x.xmid
~73!

S~x!5x1D, D56d

if x1D,0 then S~x!52D2x

and if x1D. x̂ then S~x!52x̂2x2D. ~74!

First let us look at the casexmid5x2D5 x̂5`. This corre-
sponds to an attractive fixed point at the origin. Thus in
absence of a stochastic force, the equilibrium distribut
will be a d function at the origin as all particles are inexor
bly attracted towardsx50.

If we turn on the fluctuation, then the beam will sett
near the origin. The reader can check that all the even e
librium moments can be exactly computed. For example,
have

^x2&`5
d2

12l2 , ~75!

while the odd moments depend on the distribution

^x&`5
d

12l S E
0

d
r`~x!

~d2x!

d
dxD ,

d

12l
. ~76!

This simple model can be simulated easily by brute for
Irwin method, and our method. We should point out that o
method is~unfairly! rigorous in this one-dimensional prob
lem because it must be true that the distribution sits on
trajectories of the unperturbed problem~points on the real
axis!. However, we selected this simple problem because
methods are easily implemented.

For the casexmid5x2D5`, we will see that all the meth
ods ‘‘work’’ in the sense that they produce good results. T
Irwin method will actually produce extremely good resul
n,
he
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In fact, the Irwin method can be shown to be a rigoro
extension of the brute force method in such a case.

Now what can be said of the casexmid,x2D, x̂
5n^x`

2 &1/2? The reader notices that this system has two fix
points: one at zero and one atx2D . We will find that the
Irwin method has serious troubles if the islands are far ap
it is reduced to brute force. Let us describe in words
implementation of these three methods.

1. Brute force

Let us discretize the space intoN points,

xj5 j
x2D

N
, j 51,N. ~77!

Now we simply track a ray for a large number of turnsM
and record the visiting frequency of each interval@xj ,xj 11#.

Obviously this method has the usual problem: to know
tail with a good accuracy one needs to waste an enorm
amount of time building the core to a ridiculous accurac
Therefore the number of turns needed becomes prohibit

2. The Irwin method

The Irwin method is a clever trick which allows one
keep a constant accuracy from core to tail. Suppose we
termine that to know to the core with a 1% accuracy
better, it is necessary to track 10 000 particles.~Let us define
the core as the region near the origin containing 90% of
particles.! Then the Irwin method proceeds as follows.

Step 0: Track 10 000 particles until they seem to settle
an equilibrium.

Step 1: Locate the surfacex90 that determines the limit of
the core; the position below which 90% of the particles a
Record the population distribution of that core; this will b
the equilibrium core.

Step 2:~useless in one dimension! Now track the 10 000
for a few more damping times and record where the partic
cross thex90 boundary. Obviously in one degree of freedo
they all cross at the same place. Store this flow informat
for future usage.

Step 3: Start 10 000 particles in the regionx.x90. Track
as in step 0. However, each time a particle falls belowx90,
put a particle back on the surfacex90 using the flow infor-
mation computed at step 2.~In one degree of freedom, sim
ply put back atx90.) This step clearly assumes equilibrium

Step 4: Go back to step 1. Now the word core applies
this new region.

This algorithm is looped around as many times as nec
sary. In the case when 90% is selected, we slowly adva
towards the deeper part of the tail, each iteration looking i
a region nine times less populated than the previous iterat
The accuracy, it is hoped, remains approximately the sa
and more importantly, the number of particles needed
each region is the same for a constant accuracy.

This method, originally due to Irwin, has been very su
cessful and is not limited to one or two dimensions. Furth
more, unlike brute force, it permits the exploration of ta
for most problems~but not all, as we will see! with a good
degree of accuracy.
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4806 PRE 60ÉTIENNE FOREST AND DAVID S. ROBIN
It should be pointed out that the ergodic hypothes
which is behind Irwin’s method and brute force, allows us
replace the tracking of a core~10 000 particles, for example!
by the tracking of a single particle as in the brute for
method. This point, apparently not in Irwin’s original pape
greatly simplifies the work. It also permits a unification
the brute force method and the Irwin method. The Irw
method is a clever extension of the brute force method ra
than a competing algorithm. We will use it on the on
dimensional map of Eq.~73!.

3. The map method

The map method is trivially applicable to this on
dimensional problem. The support trajectories are simply
grid pointsxj . The p projection can be selected as in E
~10!. As usual a number of turns equal to a substantial fr
tion of the damping time must be used. The end result will
a map U propagating a distribution supported by th
‘‘points’’ xj .

4. No islands: xmid5x2D/25`

Here we performed a brute force simulation wi
280 000 000 particle turns. We also performed an Irwin c
culation with 14 steps of 20 000 000 particle turns. At ea
step we advance by increments of 90% deeper in the
Finally we did a map calculation with 101 entries. A 10
turn map was computed with 28 000 stochastic experime
for each entry. In the language of Eq.~20!, the map calcula-
tion was done with

q5100, Nb51, M528 000. ~78!

The parameters for the map were selected as follows:

l50.999 and d50.09,

with a total grid over the region

xP@0,100̂ x2&1/2#, ^x2&1/2'2.013.

FIG. 9. Comparison in the case ofxmid5x2D/25`.
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This interval was divided into 100 small intervals and th
into 101 points for the map computation. For the sake
comparison, the binning algorithm used the projectionp of
the map algorithm both in the brute force and in the Irw
calculation. We can see in Fig. 9 that the map method ag
in the tail with the Irwin method up to the point where th
Irwin method starts to fall apart.

5. With islands: xmid<x2D< x̂5nkx`
2 l1/2

In this case we considered the following ‘‘tough’’ cas
~see Fig. 10!:

xmid56^x2&1/2, x2D510.5̂ x2&1/2, and x̂515̂ x2&1/2.
~79!

The Irwin method was tried with 203106 as well as 200
3106 particle tracking per iteration. Each iteration attempt
to build the distribution in increments of 50%, which is,
course, conservative.

The map method was also used and the results were
more constant, indicating that it probably settled to an
swer closer to the correct one. Why do we get these
results? It has to do with the sudden appearance of a core
region at large amplitude. As we built the tail, this region
invisible; no particles whatsoever have yet entered it. Intr
sically there is nothing wrong with this because the sam
true in a regular monotonically decreasing distribution. Ho
ever, in the case of a big island, the center of ‘‘gravity’’
the tail abruptly jumps as particles start populating this
land. In our example it was typical to see a jump of the l
Irwin surface from 25% ofx̂ to about 70%. In other words
the Irwin algorithm suddenly discovers the existence o
second beam orbiting around the island centered aroundx2D
and starts building the outer tail of that island. The inner t
between the central island and outer island is badly rep
sented.

One way to fix this problem would be to increase t
number of particle turns, but this is a return to brute for
The second possibility would be to devise a two-core Irw
method and match at the interisland boundary.

FIG. 10. Comparison for the separated islands case.xmid

56^x2&1/2, x2D510.5̂ x2&1/2, and x̂515̂ x2&1/2.
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FIG. 11. Logarithmic and linear plots for the closer islands case.xmid53.75̂ x2&1/2, x2D57.5̂ x2&1/2, and x̂515̂ x2&1/2.
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To show how things get better as the islands appro
each other, we also simulated the following case~see Fig.
11!:

xmid53.75̂ x2&1/2, x2D57.5̂ x2&1/2, and x̂515̂ x2&1/2.
~80!

We simulated ‘‘brute’’ force with 2803106 particle turns.
The particle visited each region 105 times and thus the b
force results must be sensible. The reader will notice t
there is an excellent agreement between the brute force s
lation and the Irwin method. Of course in the extreme tail,
the logarithm plot shows, the Irwin method agrees much b
ter with the map method. Let us look at the case

xmid55^x2&1/2, x2D510̂ x2&1/2, and x̂510̂ x2&1/2.
~81!

This case must have by symmetry equal population in b
islands. So, for the purpose of making things a little asy
metric, two grids were chosen. In one case 100 interv
separated 11̂x2&1/2 rather than 10.

This places the midpoint between the 45th and 46th g
point, at 45.45 to be precise. We also tried to put the ce
point at 45.25 using 100 intervals over a distance of ab
11.0497̂x2&1/2—it is interesting to see if this affects the tot
population of the two islands. The results are displayed
Fig. 12. The distribution is very symmetric as one wou
expect. Actually the percentages of the total population
cupying the first island are found to be 51.4%, 48.4
47.9%, 50.0%, and 49.8% for the five simulations shown
Fig. 12.

Our last example, with this one-dimensional map, co
cerns the case of a large island with a small population.
parameters are

xmid55^x2&1/2, x2D57.5̂ x2&1/2, and x̂510̂ x2&1/2.
~82!

We selected 100 grid points over 11.0497~for no particular
reason in this case!. The results are in Figs. 13 and 14.

This case shows how the Irwin method, which wor
beautifully in a monotonic case, seems to have trouble w
h
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even small islands. The basic problem is the sudden pop
tion increase as one reaches the outer island.

E. An advanced light source case

The Berkeley Advanced Light Source is a 12-fold trip
bend achromat ring. An experiment was conducted ‘
gauge’’ the amount of beam present in the main island
well as in the third order islands shown in Fig. 15.

At first we thought that these islands were perhaps po
lated by gas scattering or other long range phenomena
appears that the ordinary radiation process is sufficien
cause the outer islands to populate. In any event, this
good example of the method with its pluses and minuses

The first hurdle is the dimensionality of the problem. T
full problem certainly requires a multidimensional calcul
tion. If we ignore the vertical direction, there still remain th
synchrotron oscillations. However, if we go to a dispersi
free point right at the symmetry point where insertion d
vices are normally put, the equilibrium beam will be ‘‘on
dimensional.’’ By that we mean that the equilibrium qu

FIG. 12. Symmetric case~200-turn map!. xmid55^x2&1/2 and
x2D5 x̂510̂ x2&1/2.



4808 PRE 60ÉTIENNE FOREST AND DAVID S. ROBIN
FIG. 13. Small island calculation with tail results magnified.xmid55^x2&1/2, x2D57.5̂ x2&1/2, and x̂510̂ x2&1/2.
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dratic moments will be proportional or consistent with t
existence of an equilibrium emittance whose shape is gi
by the one-dimensional Courant-Snyder theory. Theref
using the beam envelope@11,12# formalism, we check this
assertion and concoct a one-dimensional stochastic
which will give us the correct horizontal moments at t
symmetry point. There is a lot of hand waving, but it do
reduce the dimensionality of the problem to a one-degree
freedom case.

For better or worse here is how we proceeded. First le
assume a one-dimensional problem. It is easy to show
the average moments are given by

^x2&5
1

2
b^«&, ^p2&5

1

2
g^«&, and ^xp&52

1

2
a^«&.

~83!

The quantity^«& is the average value of the Courant-Snyd
invariant. Therefore if the beam sizes at the dispersion
point ‘‘appear’’ one dimensional, we expect

^x2&
b

'
^p2&

g
'2

^xp&
a

. ~84!
n
e,

ck

f-
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The moments were computed using a six-dimensional be
envelope formalism. We found these ratios to be cons
within better than one part in a thousand. The next step c
sists in generating a random kick in thex direction which
will reproduce the correct moments. The formula for t
quadratic moment of that kick̂d2& is obtained by equating
the stochastic change in the Courant-Snyder invariant w
the change due to damping:

^d2&5
4~12l!^x2&

bg
. ~85!

The stochastic kick as well as the damping parameterl are
input to a one-dimensional tracking of the ALS.

At this stage we can link our favorite tracking code wi
our GUI program and track element by element as we n
mally do. Of course since the beam is rather small we
tempted to generate a Taylor series map using trunc
power series algebra~TPSA! and perform symplectic track
ing with an adequate method. It should be said that this
perfect problem on which to try the TPSA map tracking. W
found out that the phase space of Fig. 15 can reproduce
FIG. 14. Some good results for small islands using very approximate maps.
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a fifth degree Taylor series map. The map was factorized
its nonlinear part was tracked using a characteristic funct

Damping was added by a general multiplicative factor

l5exp~24.14331025! ~86!

acting on the matrix part of the map. The stochastic kick w
added as before on the variablex. To speed up tracking the
damping was increased tol5e(21.1431024). We checked that
the deterministic damped map had similar basins of att
tion. The stochastic fluctuation was increased so as to k
the nominal beam sizes constant.

For the case of Fig. 15 the islands were close enoug
be obtainable by brute for tracking. We tracked 5003106

turns and recorded the visitation frequency. We also
corded the number of times the particle moved from
middle of the main island to the middle of the outer islan
We found that this happened 350 times. This implies that
relative population is probably known quite accurately
brute force tracking. The result is plotted in Fig. 16 whe
both linear and logarithmic plots are displayed. Numerica
we found the population of the center island to 3.9% of
total population.

We found out that the map method does a particularly
job at estimating the relative population. We are not comp

FIG. 15. Support grid for the ALS example.

FIG. 16. Results of 500 000 000 turns of brute force tracking
ALS.
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ing with the experiment but simply comparing brute for
with the map method on a given representation of the exp
ment. For example, if we select the grid support displayed
Fig. 15, we can estimate the center island population to b
about 7.5% using a 10 000 turn map. Reducing the num
of turns to 5000 increased this estimate to 9%. Pushing i
20 000 turns gave us the more correct 4.5%. What is go
on here?

First of all it is clear that if we push the number of stati
tical experiments towards brute force numbers~per trajec-
tory!, we will obtain the brute force result. The map, of litt
value, will simply indicate that all initial distributions ten
towards the equilibrium distribution. Therefore we shou
not be surprised to see the results improving as the num
of turns represented by the mapU increases.

Why are the results so hard to obtain? We think that
large size of the islands creates a substantial region of s
tune. Figure 17 shows again the logarithmic plot where
have enhanced colors and shadows to reveal the asymm
of the equilibrium distribution. Around the fixed points th
equilibrium distribution does not follow the symplectic tra
jectories very well. Furthermore, this region is rather larg
but more disturbing to our method is the importance of t
region in a weakly populated tail. Indeed the relative pop
lation of the islands is determined by the transfer rate
tween support trajectories in the very close neighborhood
the separatrix if a small number of turns is used. Clearly t
can be a serious problem if the support trajectories have
relationship with the equilibrium distribution. Using a larg
number of turns is a crude way to still get a map of so
value.

We presented this example of the ALS to show that thin
are not always simple even under the best circumstan
Nevertheless the map method does produce reasonable
bers.

V. CONCLUSION

We presented a method which uses the symplectic tra
tories as support functions for representing a quasiarbit
distribution. It is quite clear that there are serious limitatio
preventing a total generalization of the map method. Ho
ever, there are also several topics we did not have the tim
space to discuss which present potentially useful area
applications.

f

FIG. 17. Another view of the logarithmic plot for ALS.
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~1! The estimate of lifetime, i.e., the creation of a m
that has an aperture and thus does not conserve particle
ber.

~2! The study of rare events such as gas scattering. T
can be done by computing a map for the rare event alone
‘‘adding’’ it to the ordinary radiative map. There are a lot
tricks involved including the calculations of one-turn ma
by taking thenth root of a map. It is a large topic on its own

~3! The study of injection efficiency which combine
some of the tricks needed above.

~4! Nonlinear effects: the map is a function of the dist
bution. We never tried anything along those lines but
should be possible.

Of course our ability to produce simple maps and perfo
some transformation on them may be needed as we tr
study problems of higher dimensionality. For example,
cannot always evaluate the map at a dispersion free p
but we can do certain canonical transformations on thed
rk
d

e,

Y

m-

is
nd

t

to
e
nt,

map which will reduce the synchrotron sloshing on the fix
point.

So we conclude on both a note of hope and despair. Th
are obviously applications for this method, but there are a
fundamental limitations.
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